quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 2124   Download 10  
基于权重强化局部方差对比的红外小目标检测
张国峰,马洪兵,艾斯卡尔•艾木都拉
0
(1.新疆大学 信息科学与工程学院,乌鲁木齐 830046;3.昌吉职业技术学院 机电工程分院,新疆 昌吉8311003;2.清华大学 电子工程系,北京 100084)
摘要:
针对红外图像中背景与目标对比度低、边缘高亮的问题,提出了一种用于红外小目标检测的局部方差对比测度算法。该算法由局部方差对比测度的计算和权重强化函数的设计两个模块组成:局部区域对比利用目标区域三层图像块模型之间的方差差异突出增强真实目标;权重强化函数的设计是为了能更好地抑制背景杂波,充分考虑了目标的统计特征、目标与其相邻背景的统计差异和背景的统计特征。实验结果表明,该方法在增强小目标和抑制背景杂波方面具有较好的效果,时间较短,鲁棒性好。
关键词:  红外图像;小目标检测;权重强化  局部方差  三层图像块
DOI:
基金项目:上海航天科技创新基金资助项目(SAST2019 48)
Infrared small target detection based on weighted strength and local variance properties
ZHANG Guofeng,MA Hongbing,Askar Hamdulla
(1.College of Information Science and Engineering,Xinjiang University,Urumqi 830046,China;3.School of Mechanical and Electrical Engineering,Changji Vocational and Technical College,Changji 831103,China;1.College of Information Science and Engineering,Xinjiang University,Urumqi 830046,China;2.Department of Electronic Engineering,Tsinghua University,Beijing 100084,China)
Abstract:
For the problems of low contrast between background and target and highlighted edge of infrared image,an infrared image detection method based on local variance contrast measure is proposed.It consists of two modules,calculation of the local variance contrast measure and design of weighted strength function.In comparison of local area,the difference of variance between the threelayer image block models in the target area is used to highlight and enhance true target.The design of weighted strength function is to suppress the background clutter in a better way,the statistical characteristics of the target,the statistical difference between the target and its adjacent background,and the statistical characteristics of the background are fully considered.The experimental results show that the proposed method is effective in enhancing small targets and suppressing background clutter with short time and good robustness.
Key words:  infrared image  small target detection  weighted reinforcement  local variance  three layer image block