摘要: |
冲激噪声环境下的测向算法大多基于分数低阶统计量提出的,其计算复杂度相对传统的二阶矩测向算法大大增加。通过对冲激噪声幅值特征进行分析,分别提出基于阵列接收数据幅度均值和中值进行幅度预处理的测向新方法。两种方法都是利用了冲激噪声分布的统计特性,首先根据阵列接收数据估计出幅值门限,然后对阵列接收数据进行幅度预处理,可以有效抑制噪声的冲激特性,从而可以利用传统的二阶矩类测向算法进行波达方向估计。理论分析和实验仿真结果表明,两种方法均处理简便,计算复杂度低,无需估计先验参数;基于中值的幅度预处理方法更是具有估计精度优良,对低信噪比时的测向性能有较大改善,且适用于强冲激噪声环境等优点。 |
关键词: 测向 冲激噪声 幅度预处理 二阶矩 分数低阶统计量 |
DOI: |
|
基金项目:国家自然科学基金资助项目(51907013);重庆市教委科学技术研究项目(KJQN202001315,KJQN201901326);重庆市自然科学基金面上项目(cstc2020jcyj msxmX0718);重庆文理学院塔基计划(R2019SDQ03) |
|
New direction finding methods based on amplitude preprocessing in impulsive noise environment |
AN Chunlian,ZHANG Ling,OU Hanwen,YANG Guyue |
(1.School of Electronic Information and Electrical Engineering,Chongqing University of Arts and Sciences,Chongqing 402160,China;2.Jilin Rail Transit Construction Project Management Co.,Ltd.,Jilin 132000,China;3.Southwest China Research Institute of Electronic Equipment,Chengdu 610036,China) |
Abstract: |
The present direction of arrival(DOA) estimation methods in impulsive noise environment are proposed mostly based on the fractional lower order statistics,while the complexity of estimating these matrices is much larger than that of the traditional secondorder moment.By analyzing the amplitude statistical property of the impulsive noise,two new DOA estimation methods are proposed based on the amplitude preprocessing by utilizing the mean value and the median value of the array received data,respectively.Firstly,the amplitude limit is estimated according to the mean value or the median value of the array received data.Then,the proposed preprocessing methods are applied,which can restrain the impulse of the noise greatly.Finally,the common secondorder moment method is exploited to estimate the DOA.Theoretical analysis and simulation results show that the proposed two methods both have simple process and small computation load.The method based on the median value of the array data has excellent estimation performance at low signaltonoise ratio,and is effective in the presence of strong impulsive noise. |
Key words: direction finding impulsive noise amplitude preprocessing second order moment fractional lower order statistics |