quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 2398   Download 36  
基于历史信息的雷达测量精度等效评估方法
马顺南,魏超,陈宏烨
0
(解放军91550部队 91分队,辽宁 大连 116023)
摘要:
飞行器发射试验前需要评估测量设备的精度。针对无校飞实验条件下的雷达测量精度评估问题,提出了一种等效精度评估方法,利用历次试验的测量数据和试验前的测试数据评估参试雷达的测量精度。分析了雷达的测量信号流程,建立了检测信息、测试信息到测量精度映射的因子合成回归模型,给出了历次测试信息一致性的秩和非参数检验方法,在测试信息一致的前提下等效评估当前的测量精度。经飞行试验测量数据验证,所提方法对雷达的测量精度评估结果与实际精度的符合性较好,可用于无校飞试验条件下技术状态稳定的雷达精度评估。
关键词:  测控系统  雷达测量精度  等效评估  因子合成回归模型  秩和非参数检验
DOI:
基金项目:
An Equivalent Evaluation Method of Radar Measurement Accuracy Based on Historical Information
MA Shunnan,WEI Chao,CHEN Hongye
(Subunit 91,Unit 91550 of PLA, Dalian 116023, China)
Abstract:
It is necessary to evaluate the accuracy of the measurement equipment before the flight experiment of aircraft.For the problem of radar measurement accuracy evaluation without flight calibration test condition,an equivalent accuracy evaluation method is proposed. The measurement data of historical experiments and the test data before the current experiment are used to evaluate the radar measurement accuracy. The signal flow of radar measurement is analyzed, and the factor synthesis regression model is established for mapping the detection information and test information to the measurement accuracy. The rank sum non-parametric test method is given to verify the consistency of the test information in historical experiments. On the premise of this consistency, the radar measurement accuracy of the current experiment is equivalently evaluated.The real data of actual flight experiments demonstrates that the radar measurement accuracy evaluated by the proposed method is consistent with the true accuracy. The proposed method can be used to evaluate the measurement accuracy of radars with stable technical status in the condition that flight calibration test can not be performed.
Key words:  TT&C system  radar measurement accuracy  equivalent evaluation  factor synthesis regression model  rank sum non-parametric test