quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 3962   Download 2594  
一种基于压缩感知的信号重建新算法
乔田田,张宇,李维国
0
(中国石油大学(华东) 理学院,山东 青岛 266580;哈尔滨理工大学 电气与电子工程学院,哈尔滨 150080)
摘要:
在求解基追踪问题的线性化Bregman迭代方法基础上,结合了广义逆的迭代技术得到一种稀疏信号重构的新算法。该算法在计算Moore-Penrose广义逆时,采用了迭代计算的方式,与算法本身相结合使得仅有矩阵向量乘积运算,避免了奇异值分解的较大工作量。通过数值试验可知,新算法相对线性化Bregman算法在计算时间上约减少了2/3,同时信号的恢复效果也是稳定有效的。因此,新算法是一种有效可行的信号重建算法。
关键词:  信号重构  压缩感知  广义逆  线性化Bregman迭代法  稀疏重构
DOI:
基金项目:国家自然科学基金资助项目(61101208);中央高校基本科研业务费专项资金(13CX02086A);国家海洋局海洋遥测工程技术研究中心创新青年基金项目(2012003)
A new signal reconstruction algorithm based on compressed sensing
QIAO Tian-tian,ZHANG Yu,LI Wei-guo
()
Abstract:
Combined with the iterative method of generalized inverse, a new algorithm for sparse signal reconstruction is developed based on linearized Bregman iteration for solving the basis pursuit problems.During calculating Moore-Penrose generalized inverse, the algorithm only has the matrix-vector multiplication by iteration combined with its own,so that the singular value decomposition(SVD) is avoided. The numerical experiments show the computation time has reduced by about 2/3 than that of original algorithms. Meanwhile,the recovery of signals is stabe and effective. So this new algorithm is a feasible signal reconstruction algorithm.
Key words:  signal reconstruction  compress sensing  generalized inverse  linearized Bregman iteration  sparse reconstruction