摘要: |
为解决改进的基于Sigmoid函数变步长最小均方(G-SVSLMS)算法步长更新公式易受噪声干扰的问题,根据高斯白噪声相关性比较差的特性,对G-SVSLMS算法进行改进,提出基于相关特性的改进G-SVSLMS算法,使算法的抗噪声干扰能力明显增强。理论分析和仿真结果表明:若两算法选取相同参数,则基于相关特性的改进G-SVSLMS算法相对于G-SVSLMS算法具有小的稳态误差;在保证算法收敛的条件下,基于相关特性的改进G-SVSLMS算法相对G-SVSLMS算法具有较快的收敛速度。 |
关键词: 信号处理 噪声抑制 G-SVSLMS算法 相关性 稳态误差 收敛速度 |
DOI: |
|
基金项目: |
|
Improved G-SVSLMS algorithm based on correlation characteristics |
LU Cui-hua,LI Guo-lin,XIE Xin,XI Xiao-liang |
() |
Abstract: |
The G-SVSLMS algorithm′s step-formula can be disturbed easily by noise jamming. According to the characteristics that the correlation of white Gaussian noise is bad, improved G-SVSLMS algorithm based on the correlation characteristic is put forward in order to improve G-SVSLMS algorithm′s ability of anti-noise. If two algorithms choose the same parameters, improved G-SVSLMS algorithm based on the correlation characteristics will have less steady-state error than G-SVSLMS algorithm. Under the condition that the two algorithms are convergent, the convergence rate of improved G-SVSLMS algorithm is bigger than that of G-SVSLMS algorithm.Improved G-SVSLMS algorithm′s performance is testified through theoretical analysis and simulation. |
Key words: signal processing noise suppression G-SVSLMS algorithm correlation characteristic steady-state error convergence rate |