quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 3467   Download 2305  
基于相关特性的改进G-SVSLMS算法
路翠华,李国林,谢鑫,奚晓梁
0
(海军航空工程学院 7系,山东 烟台 264001)
摘要:
为解决改进的基于Sigmoid函数变步长最小均方(G-SVSLMS)算法步长更新公式易受噪声干扰的问题,根据高斯白噪声相关性比较差的特性,对G-SVSLMS算法进行改进,提出基于相关特性的改进G-SVSLMS算法,使算法的抗噪声干扰能力明显增强。理论分析和仿真结果表明:若两算法选取相同参数,则基于相关特性的改进G-SVSLMS算法相对于G-SVSLMS算法具有小的稳态误差;在保证算法收敛的条件下,基于相关特性的改进G-SVSLMS算法相对G-SVSLMS算法具有较快的收敛速度。
关键词:  信号处理  噪声抑制  G-SVSLMS算法  相关性  稳态误差  收敛速度
DOI:
基金项目:
Improved G-SVSLMS algorithm based on correlation characteristics
LU Cui-hua,LI Guo-lin,XIE Xin,XI Xiao-liang
()
Abstract:
The G-SVSLMS algorithm′s step-formula can be disturbed easily by noise jamming. According to the characteristics that the correlation of white Gaussian noise is bad, improved G-SVSLMS algorithm based on the correlation characteristic is put forward in order to improve G-SVSLMS algorithm′s ability of anti-noise. If two algorithms choose the same parameters, improved G-SVSLMS algorithm based on the correlation characteristics will have less steady-state error than G-SVSLMS algorithm. Under the condition that the two algorithms are convergent, the convergence rate of improved G-SVSLMS algorithm is bigger than that of G-SVSLMS algorithm.Improved G-SVSLMS algorithm′s performance is testified through theoretical analysis and simulation.
Key words:  signal processing  noise suppression  G-SVSLMS algorithm  correlation characteristic  steady-state error  convergence rate