quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 1521   Download 912 本文二维码信息
码上扫一扫!
一种基于超分辨率网络的RIS信道估计方法
甘臣权,郭宇航,祝清意
0
(重庆邮电大学 a.通信与信息工程学院;b.网络空间安全与信息法学院,重庆 400065)
摘要:
为了在可重构智能反射面(Reconfigurable Intelligent Surface,RIS)辅助通信系统中精确估计信道,并解决信道估计开销过高的问题,提出了一种基于快速超分辨率卷积神经网络(Fast Super-Resolution Convolutional Neural Network,FSRCNN)的信道估计方案。在信道估计的初始阶段,选择关闭部分反射元件,并借助少量导频信号完成信道估计,将估计结果视为低精度与低分辨率(Low Resolution,LR)的图像,通过线性插值将其扩展为具有低精度的高分辨率(High Revolution,HR)图像。随后,利用FSRCNN提高估计结果的精度,并通过基于深度残差网络的噪声去除模型(CNN-based Deep Residual Network,CDRN)进一步提升信道估计的准确性。数值结果表明,相较于基准方案,所提的信道估计方案在保持低信道估计开销的同时,得到了更准确的信道估计结果。
关键词:  可重构智能反射面  信道估计  超分辨网络  深度残差网络
DOI:10.20079/j.issn.1001-893x.231116005
基金项目:重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0761);广西重点研发计划(AB24010317)
An RIS Channel Estimation Method Based on Super-Resolution Networks
GAN Chenquan,b,GUO Yuhang
(a.School of Communication and Information Engineering;b.School of Cyber Security and Information Law,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
Abstract:
To precisely estimate the channel in reconfigurable intelligent surface(RIS)-assisted communication systems,and solve the issue of high channel estimation overhead,the authors propose a channel estimation scheme based on the fast super-resolution convolutional neural network(FSRCNN).In the initial phase of channel estimation,a subset of reflective elements is deactivated,and a limited number of pilot signals are utilized to conduct the channel estimation,and the estimation outcomes are treated as low-precision and low-resolution(LR) images.These LR images are subsequently upscaled to high-resolution(HR) images with low precision through linear interpolation.Subsequently,the precision of the estimation outcomes is enhanced using FSRCNN,and further elevated through the convolutional neural network-based deep residual network(CDRN).Numerical results demonstrate that,the proposed method achieves more accurate results while concurrently minimizing the associated computational overhead of low channel estimation compared with the baseline method.
Key words:  reconfigurable intelligent surface(RIS)  channel estimation  super-resolution network  deep residual network