quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 1318   Download 1012 本文二维码信息
码上扫一扫!
基于动态自适应近邻算法的天波雷达RD图分类器设计
罗忠涛,唐洪涛,高天翱,曹健
0
(1.重庆邮电大学 通信与信息工程学院,重庆 400065;2.南京电子技术研究所,南京 210013)
摘要:
天波雷达的干扰检测问题可转化为距离-多普勒(Range-Doppler,RD)图像分类。在RD图分类器设计中,使用K近邻(K-Nearest Neighbor,KNN)算法时,玨值的选取直接影响到干扰检测准确率。根据过往经验预设玨值时,无法确定所设玨值下的干扰检测准确率。为此,将互近邻条件引申为玨值自动赋值方法,以局部均值为距离计算依据,设计动态自适应近邻(Dynamic Adaptive Nearest Neighbor,DANN)新算法。分别在多个UCI(University of California Irvine)数据集与现有RD图库上测试,与6个常数玨值下K近邻算法进行对比分析。多个UCI数据集实验表明,DANN的平均准确率比不同玨值下KNN的均值高6.21%,且比最优玨值高3.7%;实测RD图库实验表明,DANN的平均准确率比不同玨值下KNN的均值高2.9%,且比最优玨值高0.56%。因此,该算法可以在干扰检测中减少人工参与,且能够获得较高的检测准确率。
关键词:  天波雷达  干扰检测  RD图像分类  自适应近邻
DOI:10.20079/j.issn.1001-893x.230504005
基金项目:国家自然科学基金资助项目(61701067,61702065)
RD Image Classifier Design Based on Dynamic Adaptive Nearest Neighbor Algorithm for Sky Wave Radar
LUO Zhongtao,TANG Hongtao,GAO Tianao,CAO Jian
(1.School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;2.Nanjing Research Institute of Electronics Technology,Nanjing 210013,China)
Abstract:
The interference detection problem of sky wave radar can be converted into range-Doppler (RD) image classification.When K-nearest neighbor (KNN) algorithm is used in the design of RD image classifier,the selection of 玨 value directly affects the accuracy of interference detection.The 玨 values is required to be preset according to past experience,but the accuracy of interference detection cannot be anticipated under the set 玨 values.Therefore,the authors extend the mutual nearest neighbor condition to the 玨 value automatic assignment method,and by using the local mean as the distance calculation basis,designs a new dynamic adaptive nearest neighbor (DANN) algorithm.The proposed algorithm is testel on multiple University of Calitornia Irvine(UCI) datasets and existing RD image dataset,and compared with the KNN algorithm with 6 constant 玨 values.Multiple UCI dataset experiments show that the average accuracy of DANN is 6.21% higher than the mean of KNN under different 玨 values,and 3.7% higher than the optimal 玨 value.The real RD image dataset experiment shows that the average accuracy of DANN is 2.9% higher than the mean of KNN under different 玨 values,and 0.56% higher than the optimal 玨 value.The proposed algorithm can reduce manual involvement in interference detection and obtain a better detection accuracy.
Key words:  sky wave radar  interference detection  range-Doppler image classification  adaptive nearest neighbor