quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 1545   Download 933 本文二维码信息
码上扫一扫!
一种基于改进YOLOv7的无人机多目标光学检测方法
赵青,察豪,牟伟琦,罗宇
0
(1.海军工程大学 电子工程学院,武汉 430033;2.中国人民解放军32212部队,北京 100036)
摘要:
为解决由于空中多目标及其多尺度特征导致的目标检测召回率低、精确度低等问题,提出了一种基于YOLOv7改进的无人机多目标光学检测方法。针对无人机蜂群目标,使用K-means算法对自制的多尺度无人机数据集(Multi Scale Drone Dataset,MSDD)优化聚类,对原有YOLOv7锚框进行增改;在特征融合网络部分加深网络层数,使更深层的特征与浅表特征进一步融合,增强小尺度目标的特征表达能力;在网络预测部分增加一个极小目标预测头,有效增强多尺度、多目标的检测性能。较原YOLOv7算法,改进算法在自制数据集上mAP达到75.69%,提升了6.25%,对于多尺度特征的无人机多目标检测具有更好检测效果。
关键词:  无人机蜂群  光学检测  空中多目标检测  多尺度特征  特征融合
DOI:10.20079/j.issn.1001-893x.230704002
基金项目:
A Multi-target Optical Detection Method for UAVBased on Improved YOLOv7
ZHAO Qing,CHA Hao,MU Weiqi,LUO Yu
(1.College of Power Engineering,Naval University of Engineering,Wuhan 430033,China;2.Unit 32212 of PLA,Beijing 100036,China)
Abstract:
To solve the problems of slow detection speed and poor recognition in aerial multi-target detection with multi-scale features,an unmanned aerial vehicle(UAV) target detection algorithm based on improved YOLOv7 is proposed. For UAV swarm target,anchors of YOLOv7 are changed by using K-means algorithm to optimize the clustering of the self-built multi-scale drone dataset(MSDD).The network layers are extended in the neck network,so that the feature expression ability of small-scale targets is enhanced by further fusion of deeper features and superficial features.A minimal target prediction layer is added into the head network to improve the multi-scale and multi-target detection accuracy.Compared with that of the original YOLOv7 algorithm,the mAP of the improved algorithm reaches 75.69 % on the self-built dataset,which is improved by 6.25 %.The algorithm has better detection performance for UAV multi-target detection with multi-scale features.
Key words:  UAV swarm  optical detection  aerial multi-target detection  multi-scale features  feature fusion