quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 1658   Download 880 本文二维码信息
码上扫一扫!
基于深度强化学习的无蜂窝系统无线接入点选择算法
赵婉楠,宋晓阳,赵迎新,吴虹,刘之洋
0
(南开大学 电子信息与光学工程学院,天津 300350)
摘要:
面向以用户为中心的无蜂窝分布式多输入多输出(Multiple睮nput Multiple睴utput,MIMO)架构,研究利用不完备信道状态信息(Channel State Information,CSI)下实现无线接入点(Access Point,AP)与用户(User Equipment,UE)之间的选择,提出基于深度强化学习(Deep Reinforcement Learning,DRL)的高效分配算法,通过使用不完备CSI快速生成以用户为中心的AP集合,减少了对前馈链路容量的占用。仿真结果表明,与其他传统选择算法相比,所提出的DRL接入点选择算法可以获得至少22.48%的总遍历频谱效率增益;与深度Q网络 (Deep睶睳etwork,DQN)算法相比,可以获得约14.17%的总频谱效率增益。
关键词:  MIMO  以用户为中心的无蜂窝网络  接入点选择  深度强化学习  频谱效率增益
DOI:10.20079/j.issn.1001-893x.230418003
基金项目:国家自然科学基金资助项目(61871239)
An Access Point Selection Algorithm for Cell-ree Systems Based on Deep Reinforcement Learning
ZHAO Wannan,SONG Xiaoyang,ZHAO Yingxin,WU Hong,LIU Zhiyang
(College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China)
Abstract:
The selection problem between wireless access point (AP) and user equipment (UE) in a user-entric cell-ree distributed multiple-nput multiple-utput (MIMO) system is investigated when only partial channel state information (CSI) is available.Based on deep reinforcement learning (DRL),an efficient AP selection algorithm is proposed,which uses partial CSI to rapidly generate a user-entric set of APs to reduce the occupancy of the fronthaul link.Simulation results demonstrate that the proposed DRL-ased AP selection algorithm can achieve sum ergodic spectrum efficiency gain of at least 22.48
Key words:  MIMO  user-entric cell-ree network  AP selection  deep reinforcement learning  spectral efficiency gain