quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 6416   Download 1542 本文二维码信息
码上扫一扫!
智能反射面辅助MU-MISO系统宽带信道估计算法
程方旭,李方伟
0
(1.重庆邮电大学 通信与信息工程学院,重庆 400065;2.公共大数据安全技术重庆市重点实验室,重庆 401420)
摘要:
为适应移动通信系统的宽带化应用,针对智能反射面(Intelligent Reflecting Surface,IRS)辅助多用户多输入单输出系统信道估计问题,提出了一种基于稀疏矩阵分解的改进正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法。首先,考虑基站导频约束及IRS相移约束,建立一个压缩感知模型。然后,通过自适应地细化变换矩阵的分辨率,避免稀疏信号的细节丢失;再利用信道在不同子载波处共享的公共稀疏性,对多个子频带进行联合估计。最后利用级联信道的双结构稀疏性,将信道估计扩展至多用户场景。仿真结果表明,与传统压缩感知算法相比,所提算法能以较小的导频开销获得更高的准确性。
关键词:  MU-MISO系统  宽带信道估计  智能反射面(IRS)  OMP算法  双结构稀疏性
DOI:10.20079/j.issn.1001-893x.220428002
基金项目:国家自然科学基金资助项目(61771084);长江学者和创新团队发展计划基金资助项目(IRT16R72)
A Broadband Channel Estimation Algorithm for Intelligent Reflecting Surface Aided MU-MISO Systems
CHENG Fangxu,LI Fangwei
(1.School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;2.Chongqing Key Laboratory of Public Big Data Security Technology,Chongqing 401420,China)
Abstract:
In order to adapt to the broadband application of mobile communication system,an improved Orthogonal Matching Pursuit(OMP) algorithm based on sparse matrix decomposition is proposed for the channel estimation in an Intelligent Reflecting Surface(IRS) assisted multiple users multiple input single output(MU-MISO ) system.Firstly,considering the base station pilot constraint and IRS phase shift constraint,a compressed sensing problem is established.Secondly,the resolution of the transform matrix is adaptively refined to avoid the loss of details of sparse signals.Then,the common sparsity of the channel shared at different subcarriers is used to jointly estimate multiple sub-bands.Finally,using the dual structure sparsity of cascaded channels,the channel estimation is extended to multi-user scenarios.Simulation results show that compared with the traditional compressed sensing algorithms,the proposed algorithm can achieve higher accuracy.
Key words:  MU-MISO system  broadband channel estimation  intelligent reflecting surface(IRS)  OMP algorithm  double structure sparsity