quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 6893   Download 2210 本文二维码信息
码上扫一扫!
一种基于随机森林的LOS/NLOS基站识别方法
戢静红,张振宇,邓平
0
(西南交通大学 信息科学与技术学院,成都 611756)
摘要:
蜂窝移动通信环境复杂多变,在基站和移动台之间不可避免会出现电波的非视距(Non-Line-of-Sight,NLOS)传播,使基站和移动台之间的距离测量误差显著增大,导致定位性能急剧下降。为了准确识别出视距(Line-of-Sight,LOS)与非视距传播的基站信号,提出了一种基于随机森林的LOS/NLOS基站识别方法,通过分析移动台与各基站接收机测量距离与定位误差之间的相关性,选择LOS/NLOS测量距离作为特征进行分类器训练,再将分类器用于LOS/NLOS基站的识别。仿真结果表明,该方法对NLOS基站的正确识别率达到90%以上,能取得较好的定位性能。
关键词:  无线定位  基站信号识别  NLOS识别  机器学习  随机森林
DOI:10.20079/j.issn.1001-893x.220320001
基金项目:国家自然科学基金资助项目(61871332)
A Random Forest-based LOS/NLOS Base Station Identification Method
JI Jinghong,ZHANG Zhenyu,DENG Ping
(School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,China)
Abstract:
The cellular mobile communication environment is complex and volatile,and the Non-Line-of-Sight(NLOS) propagation of radio waves inevitably occurs between base stations and mobile stations,which causes a significant increase in the distance measurement error between base stations and mobile stations and leads to a sharp decrease in localization performance.In order to accurately identify Line-of-Sight(LOS) and NLOS base station signals,a Random Forest-based LOS/NLOS base station identification method is proposed.By analyzing the correlations between the measured distances of mobile stations and each base station receiver and the localization errors,the LOS/NLOS measured distances are selected as features for classifier training,and then the classifier is used for the identification of LOS/NLOS base stations.Simulation results show that the correct recognition rate of NLOS base stations by the method reaches more than 90
Key words:  wireless positioning  base station signal identification  NLOS identification  machine learning  random forest