quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 7184   Download 1965  
基于数据增强和特征嵌入的自动调制识别
谭凯文,闫文君,宫跃,张婷婷
0
(海军航空大学 航空作战勤务学院,山东 烟台 264001)
摘要:
基于端到端的深度学习模型已经被广泛应用于自动调制识别。现有的深度学习方案大多数依赖于丰富的样本分布,而大批量的标记训练集通常很难获得。提出了一种基于数据驱动和选择性核卷积神经网络(Convolutional Neural Network,CNN)的自动调制识别框架。首先开发深度密集生成式对抗网络增强5种调制信号的原始数据集;其次选择平滑伪Wigner-Ville分布作为信号的时频表示,并将注意力模块用于聚焦时频图像分类中的差异区域;最后将真实信号输入轻量级卷积神经网络进行时间相关性提取,并融合信号的时频特征完成分类。实验结果表明,所提算法提高了在低信噪比情况下的识别精度,表现出较强的鲁棒性。
关键词:  自动调制识别  卷积神经网络  生成式对抗网络  注意力机制  数据增强
DOI:10.20079/j.issn.1001-893x.220304002
基金项目:国家自然科学基金资助项目(91538201);“泰山学者”工程专项经费基金(ts201511020);信息系统安全技术国家重点实验室基金资助课题(6142111190404)
Automatic modulation recognition based on data enhance ment and feature embedding
TAN Kaiwen,YAN Wenjun,GONG Yue,ZHANG Tingting
(Aviation Combat Service College,Naval Aviation University,Yantai 264001,China)
Abstract:
The end-to-end deep learning model has been effectively applied in automatic modulation recognition(AMR).Most deep learning schemes need a large number of training samples,and a large number of labeled training sets are usually difficult to obtain.The authors propose an automatic modulation recognition framework based on data-driven and selective kernel convolution neural network(CNN).Firstly,a deep dense generative adversarial network(GAN) is developed to enhance the original data set of five modulation signals.Secondly,the smooth pseudo Wigner-Ville distribution is selected as the time-frequency representation of the signal,and the attention block is used to focus the difference region in the time-frequency image classification.Finally,the real signal is input into lightweight CNN for time correlation extraction,and the time-frequency characteristics of the signal are fused to complete the classification.Experimental results show that the proposed algorithm improves the recognition accuracy in the case of low signal-to-noise ratio and shows strong robustness.
Key words:  automatic modulation recognition  convolutional neural network  generative adversarial network  attention mechanism  data enhancement