quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 6681   Download 1188  
基于多任务学习和注意力机制的双分支深度换脸检测方法
胡靖,蒲文博,孔维华
0
(成都信息工程大学 计算机学院,成都 610225)
摘要:
深度换脸技术的出现严重威胁了公众的隐私安全。为了解决现有深度换脸检测方法的局限性,基于多任务学习策略提出了一种双分支检测网络,实现在检测视频伪造的同时逐帧检测。该网络引入了注意力机制和时序学习模块,通过学习局部空间信息和时序信息提升检测性能。该方法在公开数据集Celeb-DF和FaceForensics++上获得了比当前先进换脸检测方法更高的准确率和ROC(Receiver Operating Characteristic)曲线下面积(Area under ROC Curve,AUC),面对不同光照、人脸朝向、视频质量时表现出了良好的鲁棒性。
关键词:  深度换脸检测  多任务学习  注意力机制
DOI:10.3969/j.issn.1001-893X.
基金项目:国家自然科学基金重点项目(42130608);国家自然科学基金资助项目(61602065);四川省科技厅重点研发项目(021YFG0038)
Two-branch deepfake detection method based on attention mechanism and multitask learning
HU Jing,PU Wenbo,KONG Weihua
(School of Computer Science,Chengdu University of Information Technology,Chengdu 610225,China)
Abstract:
performing frame-by-frame detection.The attention mechanism and temporal learning module are introduced to learn local spatial and temporal information to effectively improve performance.Experiments on public datasets Celeb-DF and FaceForensics++ show that the proposed method achieves higher accuracy and the Area under ROC Curve(AUC) scores than state-of-art methods.Furthermore,this method shows better generalization robustness on different light conditions,face orientations,video qualities than existing methods.
Key words:  deepfake detection  multi-task learning  attention mechanism