quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 2416   Download 48  
异构网络中用户关联和功率控制的协同优化
樊雯,陈腾,菅迎宾
0
(石家庄铁路职业技术学院 信息工程系,石家庄 050041)
摘要:
针对正交频分多址(Orthogonal Frequency Division Multiplexing Access,OFDMA)异构网络中用户关联和功率控制协同优化不佳的问题,提出了一种多智能体深度Q学习网络(Deep Qlearning Network,DQN)方法。首先,基于用户关联和功率控制最优化问题,构建了正交频分多址的双层异构网络系统模型,以实现智能决策;其次,根据应用场景和多智能体DQN框架的动作空间,对状态空间和奖励函数进行重构;最后,通过选取具有宏基站(Base Station,BS)和小型BS的两层异构网络,对多智能体DQN算法的性能进行仿真实验。仿真结果表明,相较于传统学习算法,多智能体DQN算法具有更好的收敛性,且能够有效提升用户设备(User Equipment,UE)的服务质量与能效,并可获得最大的长期总体网络实用性。
关键词:  异构网络  用户关联  功率控制  强化学习  深度Q学习网络(DQN)
DOI:
基金项目:河北省高等学校青年基金项目(SQ201042)
Cooperative optimization of user association and power control in heterogeneous networks
FAN Wen,CHEN Teng,JIAN Yingbin
(Department of Information Engineering,Shijiazhuang Railway Vocational and Technical College,Shijiazhuang 050041,China)
Abstract:
To solve the problem of poor joint optimization of user association and power control in orthogonal frequency division multiplexing access(OFDMA) heterogeneous networks,a multiagent deep Qlearning network(DQN) method is proposed.First,a twolayer heterogeneous network system model of OFDMA is constructed to realize intelligent decisionmaking based on user association and power control optimization.Secondly,the state space and reward function are reconstructed according to the application scenario and the action space of the multiagent DQN framework.Finally,the performance of the multiagent DQN algorithm is simulated by selecting a twolayer heterogeneous network with macro base station(BS) and small BS.The simulation results show that the multiagent DQN algorithm has better convergence,and can effectively improve the service quality and energy efficiency of user equipment(UE).At the same time,the maximum longterm overall network utility can be obtained compared with traditional learning algorithms.
Key words:  heterogeneous network  user association  power control  reinforcement learning  deep Q learning network(DQN)