quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 2969   Download 115  
大规模MIMO系统中基于TFQMR的低复杂度信号检测算法
陈洪燕,李刚,景小荣
0
(1.重庆邮电大学 通信与信息工程学院,重庆 400065;2.中兴通讯股份有限公司,深圳 518000)
摘要:
在大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统上行链路检测算法中,最小均方误差(Minimum Mean Square Error,MMSE)算法可取得近似最优的性能,然而MMSE算法涉及高维矩阵求逆问题,其计算复杂度高达O(K3),其中K表示用户数。为此,针对极化信道编码的大规模MIMO系统,基于无转置极小残差(Transpose-Free Quasi-Minimal Residual,TFQMR)方法,提出了一种低复杂度次优信号检测算法。该算法有效地避免了矩阵求逆运算,使其计算复杂度降至约O(K2)。仿真结果表明,基于TFQMR的信号检测算法的误比特率性能与计算复杂度均优于基于Neumann级数展开的信号检测算法;同时,最多经5次迭代该方法可取得接近MMSE检测算法的性能。
关键词:  大规模MIMO  信号检测  最小均方误差  无转置极小残差
DOI:
基金项目:国家自然科学基金资助项目(61701062);重庆市基础与前沿研究计划项目(cstc2019jcyj-msxmX0079)
A low complexity signal detection algorithm based on TFQMR for massive MIMO systems
CHEN Hongyan,LI Gang,JING Xiaorong
(1.School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;2.ZTE Corporation,Shenzhen 518000,China)
Abstract:
Minimum mean square error(MMSE) detection algorithm can achieve near optimal performance for uplink massive multiple-input multiple-output(MIMO) systems.However,the MMSE algorithm needs the calculation of the inversion of the high-dimension matrix,which involves the computational complexity as high as O(K3) with K denoting the number of users.Therefore,for the polar-channel-coded massive MIMO systems,a low-complexity sub-optimal signal detection algorithm is proposed based on the transpose-free quasi-minimal residual(TFQMR) method.The proposed algorithm avoids matrix inversion and reduces its computational complexity to O(K2).Simulation results shows that the proposed TFQMR-based signal detection algorithm outperforms the Neumann series expansion algorithm on both the bit error rate performance and computational complexity.Meanwhile,the TFQMR-based algorithm converges and approaches the performance of the MMSE detection algorithm after at most five iterations.
Key words:  massive MIMO  signal detection  minimum mean-square error  transpose-free quasi-minimal residual