quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 2829   Download 53  
基于车辆数据的k近邻联合概率数据关联算法
刘昀晓,王东峰,曹林,杜康宁,李萌,付冲
0
(1.北京信息科技大学 通信工程系,北京 100101;2.北京川速微波科技有限公司,北京 100018;3.东北大学 计算机科学与工程学院,沈阳 110004)
摘要:
在交通场景中采用一些预警措施能够有效地减少交通事故发生。例如,对车辆轨迹进行跟踪并预测车辆的驾驶行为,就是一个常用的预警方法。在对车辆进行跟踪的过程中,数据关联是很重要的部分,它可以对车辆的观测点和轨迹进行关联,从而更新车辆的轨迹,完成跟踪过程。在此背景下,提出了一种新的数据关联算法,即k近邻联合概率数据关联算法(k Nearest Neighbor-Joint Probability Data Association,kNN-JPDA)。实验结果表明,该算法能够较好地解决在交通场景下车辆数据的数据关联问题,在精度以及运行效率方面都有所提高。
关键词:  智能交通系统  毫米波雷达  车辆轨迹  数据关联  kNN-JPDA
DOI:
基金项目:国家自然科学基金资助项目(61671069)
A k Nearest Neighbor-Joint Probability Data Association Algorithm Based on Vehicle Data
LIU Yunxiao,WANG Dongfeng,CAO Lin,DU Kangning,LI Meng,FU Chong
(1.Department of Telecommunication Engineering,Beijing Information Science & Technology University,Beijing 100101,China;2.Beijing TransMicrowave Technology Co.,Ltd.,Beijing 100080,China;3.School of Computer Science and Engineering,Northeastern University,Shenyang 110004,China)
Abstract:
Some early warning measures can effectively reduce traffic accidents in traffic scenes.For example,tracking vehicle trajectories and predicting vehicle driving behavior is a common early warning method.In the process of vehicle tracking,data association is an important part,which can associate the observations and trajectories of the vehicle,thereby updating the trajectory of the vehicle and completing the tracking process.For this background,a new data association algorithm called k nearest neighbor-joint probability data association algorithm(kNN-JPDA) is proposed.The experimental results show that the algorithm can solve the data association problem of vehicle data in traffic scenes,and it has improved the accuracy and operation efficiency.
Key words:  intelligent transportation system  milimeter wave radar  vehicle trajectory  data association  kNN-JPDA