quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 3143   Download 59  
语义分割网络下的混合信号频谱分离
马松,刘田,尚建忠,余湋,穆航,陈霄南,王军
0
(中国西南电子技术研究所,成都 610036;西安卫星测控中心,西安 710043;电子科技大学 通信抗干扰技术国家级重点实验室,成都 611731)
摘要:
单通道接收机下,多个时频混合信号的分离属于非稀疏欠定信号分离问题,难以求解。针对这类非稀疏欠定信号分离问题,提出了一种基于语义分割网络、从频域实现多个指定类别信号分离的新方法。利用语义分割网络提取信号的频域分布特征,克服了单通道接收机下信号先验信息过少的问题。仿真表明,该方法具有较高的分离精度,且响应时间短,可用于单通道接收机中时频混叠信号的分离。
关键词:  信号分离  语义分割网络  非稀疏欠定信号分离
DOI:
基金项目:
Spectra Separation via Semantic Segmentation Network
MA Song,LIU Tian,SHANG Jianzhong,YU Wei,MU Hang,CHEN Xiaonan,WANG Jun
(Southwest China Institute of Electronic Technology,Chengdu 610036,China;China Xi′an Satellite Control Center, Xi′an 710043,China;National Key Laboratory of Communication,University of Electronic Science and Technology of China,Chengdu 611731,China)
Abstract:
Separating multiple time-frequency aliasing signals via a single channel receiver is a non-sparse underdetermined signal separation (NUSS) problem,which is hard to tackle.In this paper,a new semantic segmentation network (SSN) based method is proposed to separate multiple specific time-frequency aliasing signals in frequency domain.By using a well-designed SSN,the frequency distribution features of each signal component are extracted to combat with the lack of prior information of signal sources via a single channel receiver.Simulation results show that the proposed method achieves desirable separation accuracy with short response time,which can be applied to multiple time-frequency aliasing signals’ separation for a single channel receiver.
Key words:  signal separation  semantic segmentation network  non-sparse underdetermined signal separation