quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 2307   Download 131  
多外观模型的鲁棒人脸跟踪
刘康,赖惠成
0
(新疆大学 信息科学与工程学院,乌鲁木齐 830046)
摘要:
为了解决在真实场景中进行视觉人脸跟踪时不同挑战之间的外观匹配问题,提出了一种多外观模型的人脸跟踪算法。该算法利用多个具有长期和短期外观记忆的外观模型进行有效的人脸跟踪,对变形、旋转、尺度和光照变化表现出鲁棒性。同时利用先检测后跟踪算法的优点,通过使用人脸检测器来处理人脸的剧烈外观变化,检测器也有助于在漂移过程中重新初始化所提算法。最后提出了一种加权分数级融合策略,通过在可能的人脸位置生成的候选人脸来获得融合值最高的人脸跟踪输出。实验结果证明,该跟踪器在自启动时表现出色,性能优于许多先进的跟踪器。
关键词:  人脸跟踪  多外观模型  L2-子空间  加权融合
DOI:
基金项目:国家自然科学基金资助项目(61561048);国家自然科学基金联合基金重点项目(U1803261)
Robust face tracking with multiple appearance model
LIU Kang,LAI Huicheng
(College of Information Science and Engineering,Xinjiang University,Urumqi 830046,China)
Abstract:
To solve the problem of appearance matching across different challenges in visual face tracking in real-world scenarios,a robust face tracking algorithm with multiple appearance model is proposed.The algorithm utilizes multiple appearance model with its long-term and short-term appearance memory for efficient face tracking.It demonstrates robustness to deformation,rotation,scale,and illumination variation.Meanwhile,it capitalizes on the advantages of the tracking-by-detection,by using a face detector that tackles drastic scale appearance change of a face.The detector also helps to reinitialize the proposed algorithm during drift.A weighted score-level fusion strategy is proposed to obtain the face tracking output with the highest fusion score by generating candidates around possible face locations.The tracker shows impressive performance when initiated automatically and outperformes many state-of-the-art trackers.
Key words:  face tracking  multiple appearance models  L2-subspace  weighted fusion