摘要: |
为了解决训练样本不足时的子空间信号检测问题,提出了两种有效的降秩检测器。基于主分量分析(PCA)的思想,先把常规自适应子空间检测器中采样协方差矩阵(SCM)的求逆运算用噪声特征子空间矩阵与其共轭转置的乘积代替,构造降秩子空间检测器;为进一步提高算法稳健性,把降秩子空间检测器的求逆运算用Moore-Penrose逆代替。仿真结果表明,所提方法在训练样本充足及不足时,均比现有方法具有更好的检测性能。 |
关键词: 多通道信号检测;子空间信号检测;自适应信号检测 训练样本不足;降秩方法 |
DOI:10.3969/j.issn.1001-893x.2017.09.012 |
|
基金项目:国家自然科学基金资助项目(61501505) |
|
Subspace signal detection with limited training data |
YANG Xing1,WANG Licai2,YANG Yang3,WANG Helei2,LIU Weijian2 |
(1.Unit 94402 of PLA,Jinan 250022,China;2.Huangpi NCO School,Air Force Early Warning Academy,Wuhan 430019,China;3.Military Representative Office Stationed at 720 Factory,Nanjing 210046,China)) |
Abstract: |
In order to overcome the difficulty of detecting a subspace signal with insufficient training data,two effective reduced-rank subspace detectors are proposed. According to the theory of principal component analysis(PCA),the sample covariance matrix(SCM),contained in conventional detection statistic,is replaced by the production of the noise eign-subspace and its conjugate transpose. This results in reduced-rank subspace detectors. To further improve the robustness,the matrix inversion operation is substituted by the Moore-Penrose inversion. The comparison with conventional detectors shows that the proposed reduced-rank subspace detectors can provide improved detection performance,no matter the number of the training data is sufficient or not. |
Key words: multichannel signal detection subspace signal detection adaptive signal detection limited training data rank reduction |