quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 3710   Download 506 本文二维码信息
码上扫一扫!
一种应用于欠采样图像的自适应稀疏重建方法
管春,陶勃宇
0
(重庆邮电大学 光电工程学院,重庆 400065)
摘要:
针对图像稀疏重建中因使用固定参数的全变分(TV)正则项所带来的图像细节缺失和阶梯效应问题,提出了一种自适应二阶广义全变分(TGV)约束的图像稀疏重建算法。该算法采用二阶广义全变分模型权衡图像的一阶导数和二阶导数,且能够根据每次迭代得到的重构解及对应张量函数自适应地修正权重系数,实现图像的稀疏重建。与全变分正则模型和固定参数广义全变分正则模型相比,该算法能更好地保持图像轮廓和细节信息,提高重建图像的峰值信噪比(PSNR)和结构相似度(SSIM)。
关键词:  图像处理  稀疏重建  压缩感知  广义全变分  自适应正则约束  分裂Bregman算法
DOI:10.3969/j.issn.1001-893x.2017.09.001
基金项目:
An adaptive sparse reconstruction method for undersampling images
GUAN Chun,TAO Boyu
(School of Optoelectronic Engineering,Chongqing University of Posts and Telecommunications,)
Abstract:
Considering the image detail loss and staircase effect problems caused by the fixed parameters of total variation(TV) regularization constraints in image spare reconstruction,this paper proposes an adaptive sparse image reconstruction algorithm by using second-order total generalized variation(TGV) model as the regularization constraints. The second-order TGV model is applied to balance the first and second derivative in images,and it can automatically modify the weights on the basis of each iteration solution and tensor function to achieve image sparse reconstruction. Simulation results show that compared with the TV model and fixed TGV model,this algorithm can maintain both image detail information and image outline,as well as improving peak signal-to-noise ratio(PSNR) and structure similarity(SSIM) of the reconstructed image.
Key words:  image processing  sparse reconstruction  compressed sensing  total generalized variation  adaptive regularization term  split Bregman algorith