quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 3445   Download 447 本文二维码信息
码上扫一扫!
基于支持向量机的多特征目标抗干扰检测技术
陈俊
0
(中国西南电子技术研究所,成都 610036)
摘要:
针对箔条干扰时目标与干扰难以区分的问题,设计了一种基于多特征向量的分类算法。该算法首先对目标和箔条的特征进行分析,而后选择并构造了一组具有较高区分度的极化特征识别量,最后采用支持向量机(SVM)方法,通过对特征样本进行训练,获得了较好的分类结果。实验表明,所提算法具有较强的抗箔条干扰能力,且检测正确率可达90%以上。
关键词:  多特征目标  雷达回波  抗干扰检测  支持向量机
DOI:10.3969/j.issn.1001-893x.2017.08.007
基金项目:
Multi-feature target anti-interference detection based on support vector machine
CHEN Jun
(Southwest China Institute of Electronic Technology,Chengdu 610036,China)
Abstract:
Chaff interference can bring many difficulties in target detection. Addressing on this problem, a classification algorithm is proposed in this paper. The multi-features of targets and chaffs are analyzed and extracted firstly.Then, a polarized eigenvector is designed.Finally, support vector machine(SVM) approach is applied and through data training,good classification results are achieved. The simulation results demonstrate that the proposed method has good anti-chaff -interference ability and the correct detection probability is greater than 90% at most time.
Key words:  multi-feature target  radar echo  anti-interference detection  support vector machine(SVM)