quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 2996   Download 2465  
基于手机信令的城市道路交通状态实时预测
詹益旺,胡斌杰
0
(华南理工大学 电子信息学院,广州 510640;广州杰赛科技股份有限公司,广州 510310)
摘要:
为准确、实时预测道路交通状态,通过分析影响交通的因素,利用决策树算法对速度和环境因素等数据进行建模,确定交通拥堵发生的规则,在此基础上结合实时的移动用户和环境因素数据对交通状态进行预测。以中国河北保定城区为例进行实验,验证了该方法的有效性。同时,研究发现,基于决策树算法进行道路交通状态预测的方法具有较好的扩展性。
关键词:  智慧城市  智能交通  交通状态预测  手机信令  决策树  随机森林
DOI:
基金项目:国家发改委移动互联网及第四代移动通信(TD-LTE)产业化专项(发改办高技\[2014\]2328号);粤港关键领域重点突破项目(2011A011305001)
Real-time forecasting urban traffic state based on cell phone signaling
ZHAN Yiwang,HU Binjie
()
Abstract:
In order to make accurate and real-time prediction of traffic state, the factors influencing traffic is analyzed and the decision tree algorithm is adopted to model the data of velocity and environmental factors to determine the rules of traffic congestion. Then, according to the real-time mobile users and environmental factors data, the traffic state is predicted with the generated rules. Experiment in Baoding City, Hebei Province proves the effectiveness of the proposed method. It is also found that the method based on decision tree algorithm has a high expansibility.
Key words:  smart city  intelligent traffic  traffic state prediction  cell phone signaling  decision tree  random forest