quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 3248   Download 2050  
星载AIS的复值FastICA算法改进
马社祥,马艳军
0
(天津理工大学 计算机与通信工程学院,天津 300384)
摘要:
针对星载船舶自动识别系统(AIS)的含噪复值信号盲分离算法分离效果不佳的问题,提出了改进的复值快速独立分量分析算法(FastICA)。该改进算法针对混合信号数目大于源信号数目的超定情况,对含噪混合信号的协方差矩阵进行特征值分解,利用其噪声对应的几个较小特征值估计噪声方差,修正白化矩阵,再应用Huber M估计函数优化该算法的目标函数。实验结果表明,运用该算法信号均方误差(SMSE)变小,信干比(SIR)变大,提高了信号的分离性能;同时,优化后的目标函数使算法具有良好的稳健性。
关键词:  星载AIS  复值快速独立分量分析  白化矩阵 Huber  M估计函数
DOI:
基金项目:国家自然科学基金资助项目(61371108);天津市高等学校科技发展基金计划项目(No.20140706,20140707)
Improvement of complex fast independent component analysis algorithm for satellite-based AIS
MA Shexiang,MA Yanjun
()
Abstract:
For the problem that the performance of blind separation for noised satellite-based automatic identification system(AIS) signal is not satisfying, an improved complex fast independent component analysis(FastICA)algorithm is presented. The proposed algorithm obtains the covariance matrix by the mixed signals under overdetermined case in which the number of mixed signal is greater than that of source signal,and then the covariance matrix is decomposed to get the eigenvalues,the small ones to which noise corresponds are used to estimate the approximate noise variance and improve the whitening matrix,and Huber M-estimation function is applied to optimize objective function of the algorithm. The experimental results show that the proposed algorithm has lower signal mean square error(SMSE) and larger signal to interference ratio(SIR),so it can improve the separation performance. At the same time,the optimized objective function makes the algorithm robust.
Key words:  satellite-based AIS  complex FastICA  whitening matrix  Huber M-estimation function