quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 3586   Download 2617  
一种最大分类间隔SVDD的多类文本分类算法
罗琦
0
(中国西南电子技术研究所,成都 610036)
摘要:
文本分类是信息检索和文本挖掘的关键技术之一。提出了一种基于支持向量数据描述(SVDD)的多类文本分类算法,用支持向量描述训练求得包围各类样本的最小超球体,并使得分类间隔最大化,在测试阶段,引入基于核空间k-近邻平均距离的判别准则,判断样本所属类别。实验结果表明,该方法具有很好的泛化能力和很好的时间性能。
关键词:  信息检索  文本挖掘  文本分类  支持向量数据描述  多类分类器
DOI:
基金项目:
A multi-class text categorization algorithm based on maximal classification margin SVDD
LUO Qi
()
Abstract:
Text categorization is one of the key technology to retrieve information and mine text.This paper proposes a multi-class text categorization algorithm based on maximal classification margin SVDD(Support Vector Data Description).This algorithm trains multi-class samples with support vector data description,then computes a minimal super spherical structure which can surround all samples and has maximal margin between each class. In the phase of testing,this algorithm classifies samples with a criterion of average distance based on KNN(K-Nearest Neighbor). The test result shows this algorithm has good generalization capability and good time efficiency of text categorization.
Key words:  information retrieving  text mining  text categorization  support vector data description(SVD)  multi-class classifier