quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 4566   Download 2495  
改进的基于长时谱能量差异和基音比例的语音检测方法
孟一鸣,欧智坚
0
(清华大学 电子工程系,北京 100084)
摘要:
语音检测是语音信号处理的前端,利用长时谱能量差异特征的语音检测无法区分突 发噪声和语音,掺杂着突发噪声的语音信号会对语音处理系统带来不良影响。提出了一 种基于长时谱能量差异特征和基音比例特征相结合的语音检测方法,该方法的优点是,在利 用长时谱能量差异特征基础上引入基音比例特征,从而有效减少了将信号中突发噪声误判为 语音的错误。实验显示,该算法能够在多种信噪比环境下取得很好的检测结果。
关键词:  语音信号处理  语音检测  长时谱能量差异  基音比例  突发噪声
DOI:
基金项目:
Improved voice activity detection based on long-term spectral divergence and pitch ratio features
MENG Yi-ming,OU Zhi-jian
()
Abstract:
Voice Activity Detection (VAD) is the front-end of speech processing and the VAD algorithm which uses long-term spectral divergence (LTSD) feature can′ t discriminate abrupt noise from speech. The speech signal with abrupt noise will adversely affect the speech processing system. This paper proposes a VAD algori thm which combines LTSD feature and pitch ratio feature. The advantage of the al gorithm is that by introducing pitch ratio feature, it can effectively reduce th e false alarms of taking abrupt noise as speech. Experimental results show that the algorithm achieves good performance for VAD under various signal-to-noise ratios.
Key words:  speech processing  voice activity detection  long-term spectral divergence  pitch ratio  burst noise