quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 2959   Download 2160  
一种融合流形学习的视频人脸性别识别改进算法
张丹
0
(中国西南电子技术研究所,成都 610036)
摘要:
如何有效利用视频中人脸之间的时空连续性信息来克服人脸分辨 率低、图像尺度变化大和姿态、光照变化以及遮挡等问题是视频人脸识别的关键所在。提出 了一种基于流形学习的视频人脸性别识别算法。 该算法不仅可以通过聚类融合学习来挖掘 视频内在的连续性信息,同时能发现人脸数据中内在非线性结构信息而获得低维本质的流形 结构。在UCSD/Honda和自采集数据库上与静态的算法比较结果表明,所提算法能够获得更好 的识别率。
关键词:  视频人脸性别识别  流形学习  聚类融合  保局投影  支持向量 机
DOI:
基金项目:
An improved manifold-based face gender recognition algorithm for video
ZHANG Dan
()
Abstract:
How to fully utilize both spatial and temporal information in video to overcome the difficulties existing in the video-based face recognition, such as low resol ution of face images in video, large variations of face scale, radical changes o f illumination and pose as well as occasionally occlusion of different parts of faces, has become the research focus. In this paper, a novel manifold-based fac e gender recognition algorithm for video(VG-LPP) using clustering is proposed, w hich can discover more special semantic information hidden in video face sequenc e, simultaneously well utilize the intrinsic nonlinear structure information to extract discriminative manifold features.Comparison of VG-LPP with other algorit hms on UCSD/Honda and the author′s own video databases shows that the proposed a pproach can perform better for video-based face gender recognition.
Key words:  video-based face gender recognition  manifold  cluster ing  locality preserving projection  support vector machine