quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 3928   Download 2443  
基于高阶循环累积量和支持矢量机的分级调制分类算法
冯祥,元洪波
0
(空军第一航空学院 基础部,河南 信阳 464000)
摘要:
利用观测样本的高阶循环累积量特征,提出一种基于支持矢量机的分级调制分类算法 ,实现了对QAM调制信号的自动识别。该算法具有较快的分类器训练速度和较低的复杂度, 对时延和相位旋转具有稳健性,并可在干扰环境下实现对感兴趣信号调制类型的识别。理论 分析和仿真结果均证明了算法的正确性和有效性。
关键词:  QAM调制信号  自动识别  调制分类  高阶循环累积量  循环平 稳性  支持矢量机
DOI:
基金项目:
Hierarchical modulation classification algorithm based on higher-order cyclic cumulants and support vector machines
FENG Xiang,YUAN Hong-bo
()
Abstract:
A support vector machines(SVM) based hierarchical algorithm for the au tomatic classification of QAM modulation signals is proposed. The algorithm util izes the cyclostationary property of communication signals and presents classifi cation features in cyclic cumulants domain. The algorithm is less complex comput ationally and has faster classifier training speed compared with other algorithm s. Moreover, it is robust to the presence of time delay and phase offsets. Inter esting signals can also be classified under the presence of interference signals . The efficiency of the proposed classification algorithm is verified via theore tical analysis and extensive simulations.
Key words:  QAM modulation signal  automatic identification  modulation classification  higher -order cyclic cumulants  cyclostationary  support vector machine