摘要: |
将分频段希尔伯特黄变换应用于多分量信号的频散分析中。首先,利用带通滤波器和
经验模态分解相结合,成功实现了经验模态频率分解,并准确提取了经验频率模态函数;然
后,使用该方法准确地获取了多分量含噪信号的时频能量谱和时频相位谱;最后,基于同步
相差和异步相差算法,精确绘制了原信号的相速度频散分析曲线。数值试验表明,该算法拥
有较高的时频分辨能力和良好的抗噪性能,对于复杂且信噪比较低的信号,能获得比传统希
尔伯特黄变换更准确的频散分析结果。 |
关键词: 希尔伯特黄变换 经验模态频率分解 经验频率模态函数 瞬时
频率 频散曲线 |
DOI: |
|
基金项目:国家自然科学基金资助项目(40974079) |
|
Analysis of frequency dispersion of multi-component signal using sub-band Hilbert-Huang transform |
JIANG Li |
() |
Abstract: |
In this paper, the sub-band Hilbert-Huang transform (S-HHT) is used to
analyse the frequency dispersion of multi-component signal.Firstly, the band
-pass filter and the empirical mode decomposition are combined to achieve the em
pirical mode frequency decomposition (EMFD) successfully, and accurately obtain
the empirical frequency mode functions (EFMF).Secondly,the time frequency energy
spectrums and time frequency phase spectrums from multi-component signal with n
oise are precisely drawn by the method. Finally,by using the synchronous phase
difference and asynchronous phase difference arithmetic the phase velocity disp
ersion curves are drawn accurately. The numerical results show that the S-HHT ar
ithmetic has high time frequency resolution and good resistance to noise. For co
mplex and low Signal-to-Noise Ratio(SNR) signal, the S-HHT can get the more acc
urate results of dispersion analysis than the HHT. |
Key words: Hilbert-Huang transform empirical mode frequency decomposition empirical freq
uency mode function instant frequency dispersion curves |