摘要: |
认知无线Mesh网络随着频谱空穴的变化,路径随之改变,给数据传输带来负面影响
。提出了一种自适应多路径算法,该算法采用多agent强化学习模型,结合多路径调度策略
,
通过Q-学习算法更新Q值路由表。在路由变动的情形下,节点能够始终有较优路径传输
数据。仿真结果表明,该算法能够减少网络时延,提高网络性能。 |
关键词: 无线Mesh网络 认知无线电 强化学习 多路径 |
DOI: |
|
基金项目:国家自然科学基金资助项目(60872002);江苏省高校自然科学重
大基础研究项目(07KJA51007);江苏省教育厅“青蓝工程”项目;东南大学移动通信国家重
点实验室开放研究基金资助项目(W200912) |
|
An Adaptive Multi path Routing Algorithm in CogWMN |
ZHANG Guo-an,DING Chen-li,BAO Zhi-hua |
(School of Electronics and Information, Nantong University, Nantong 226019, China;National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China) |
Abstract: |
Paths will alter with the changing of spectrum holes,which has negative effe
cts on transmissions in Cognitive Wireless Mesh Network(CogWMN). An adaptive mu
ltipath
algorithm is proposed in this paper. The proposed algorithm adopts multiagen
t
reinforcement learning model and combines with multipath scheduling strategy
t
hrough Q-learning algorithm for updated Q-value route tables. Better route can a
lways be used for nodes to transmit data when route changes. The simulation resu
lts show that the algorithm can reduce network latency and improve network perfo
rmance. |
Key words: wireless mesh network(WMN) cognitive radio(CR) reinforcement learning multi
path |