quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 3823   Download 2900  
认知无线Mesh网络自适应多路径算法
章国安,丁晨莉,包志华
0
(南通大学 电子信息学院,江苏 南通 226019;东南大学 移动通信国家重点实验室, 南京 210096)
摘要:
认知无线Mesh网络随着频谱空穴的变化,路径随之改变,给数据传输带来负面影响 。提出了一种自适应多路径算法,该算法采用多agent强化学习模型,结合多路径调度策略 , 通过Q-学习算法更新Q值路由表。在路由变动的情形下,节点能够始终有较优路径传输 数据。仿真结果表明,该算法能够减少网络时延,提高网络性能。
关键词:  无线Mesh网络  认知无线电  强化学习  多路径
DOI:
基金项目:国家自然科学基金资助项目(60872002);江苏省高校自然科学重 大基础研究项目(07KJA51007);江苏省教育厅“青蓝工程”项目;东南大学移动通信国家重 点实验室开放研究基金资助项目(W200912)
An Adaptive Multi path Routing Algorithm in CogWMN
ZHANG Guo-an,DING Chen-li,BAO Zhi-hua
(School of Electronics and Information, Nantong University, Nantong 226019, China;National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)
Abstract:
Paths will alter with the changing of spectrum holes,which has negative effe cts on transmissions in Cognitive Wireless Mesh Network(CogWMN). An adaptive mu ltipath algorithm is proposed in this paper. The proposed algorithm adopts multiagen t reinforcement learning model and combines with multipath scheduling strategy t hrough Q-learning algorithm for updated Q-value route tables. Better route can a lways be used for nodes to transmit data when route changes. The simulation resu lts show that the algorithm can reduce network latency and improve network perfo rmance.
Key words:  wireless mesh network(WMN)  cognitive radio(CR)  reinforcement learning  multi path