quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 3983   Download 3667 本文二维码信息
码上扫一扫!
多分类器融合的快速高维特征聚类图像分割
黄荣顺,吴宏刚,刘思远
0
(中国民用航空局 第二研究所,成都 610041;中兴通讯 成都研究所,成都 610041)
摘要:
提出一种多分类器融合的快速高维特征聚类图像分割方法,将图像高维 特征数据的分类分解为基于灰度(颜色)特征的最佳模糊分类以及基于空域约束的统计分类等 多个低维特征数据的分类。通过多分类器融合的方法将不同分类器得到的分类结果进行优化 整合,得到最后的分类结果。实验证明:与其它图像分类算法相比,该方法拥有更好的分 割性能并大大提高了计算速度,最大限度地保证了分割算法计算的简单有效性。
关键词:  图像分割  高维特征聚类  多分类器融合
DOI:10.3969/j.issn.1001-893X.
基金项目:国家自然科学基金重点资助项目(60736045)
Image Segmentation Based on Fast High Dimensional Characteristic Clustering Using Combination of Classifiers
HUANG Rong-shun,WU Hong-gang,LIU Si-yuan
(The Second Research Institute of CAAC, Chengdu 610041, China;Institute of Chengdu, ZTE Corporation, Chengdu 610041, China)
Abstract:
A new image segmentation algorithm is proposed which is based on fast hi gh dimensional characteristic clustering using combination of classifiers.In t he algorithm, the clustering of high dimensional characteristic data is divided into optimal fuzzy classifying of grayscale (color) and statistical c lassifying of spatial constraint information. The classification results of the two different classifiers are integrated to obtain the final image segmentation result using combination of classifiers.Experiment result proves the good p erformance and computation simplicity of the algorithm.
Key words:  image segmentation  high dimensional characteristic clustering  combination of classifiers