quotation:[Copy]
[Copy]
【Print page】 【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 3575   Download 69 本文二维码信息
码上扫一扫!
一种新的基于交互多模型的序贯重要采样算法
0
()
摘要:
通过将交互多模型(IMM)算法和粒子滤波(SIS)算法结合,提出了一种新的IMM~SIS算法。在每个模型中,都有一个标准的粒子滤波器,模型之间的交互与传统的IMM一样。由于在新的算法中,每个模型中粒子滤波都保证固定数量的粒子,因此不会出现粒子退化和贫乏现象。仿真证明了新的IMM—SIS算法在收敛速度和精度方面都要优于传统的IMM—EKF算法。
关键词:  机动目标跟踪  交互多模式模型  序贯重要采样  收敛速度
DOI:10.3969/j.issn.1001-893X.
Revised:May 11, 2007
基金项目:
A Novel Sequential Importance Sampling Algorithm Based on Interacting Multiple Model
()
Abstract:
A novel method for multiple model particle filtering for Markovian switching systems is introduced.This new method is a combination of the interacting multiple model(IMM)filter and particle filter.A regularized particle filter is running in every mode.The mixing and interaction is similar to that in a conventional IMM filter.Furthermore,the new method keeps a fixed number of particles in each mode,and therefore it avoids the particle degeneracy and impoverishment phenomenon.Simulations show that the tracking speed and accuracy of the IMM-SIS algorithm are better than those of the IMM-EKF.
Key words:  motive target tracking,interacting multiple model(IMM),sequential importance sampling(SIS),convergence speed