首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 李玉芳,王锴,张力良,等.一种基于FL-TransCNN神经网络的水声智能频谱感知算法[J].电讯技术,2026,66(1): - .    [点击复制]
  • LI Yufang,WANG Kai,ZHANG Liliang,et al.An Underwater Acoustic Intelligent Spectrum Sensing Algorithm Based on FL-TransCNN Neural Network[J].,2026,66(1): - .   [点击复制]
【HTML】 【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 83次   下载 42 本文二维码信息
码上扫一扫!
一种基于FL-TransCNN神经网络的水声智能频谱感知算法
李玉芳,王锴,张力良,徐凌伟,ThomasAaronGulliver
0
(1.青岛科技大学 信息科学技术学院,山东 青岛 266061;2.数字化学习技术集成与应用教育部工程研究中心,北京 100039;3.加拿大维多利亚大学 电子与计算机工程学院,维多利亚 V8W 3P6)
摘要:
为了提高频谱利用率,提出了一种基于联邦学习(Federated Learning,FL)、Transformer和卷积神经网络(Convolutional Neural Network,CNN)的水声智能频谱感知算法。首先,基于FL实现数据隔离状态下的信息共享,并应用Paillier加密技术进行权重加密保障;其次,本地感知数据经连续小波变换构建为时频谱图;最后,融合CNN与Transformer构建了TransCNN感知器,通过并行分支实现了高精度感知。在信噪比-18獈0 dB范围内,与RepVGG、Swin-Transformer、YOLOv7、MobileNet算法相比,所提的水声智能频谱感知算法的平均检测概率提升了4%~10%,平均虚警概率降低了2%~9%。
关键词:  海洋物联网  智能频谱感知  联邦学习  连续小波变换  深度可分离卷积
DOI:10.20079/j.issn.1001-893x.240911001
基金项目:国家自然科学基金资助项目(62201313);数字化学习技术集成与应用教育部工程研究中心创新基金项目(1321012)
An Underwater Acoustic Intelligent Spectrum Sensing Algorithm Based on FL-TransCNN Neural Network
LI Yufang,WANG Kai,ZHANG Liliang,XU Lingwei,Thomas Aaron Gulliver
(1.College of Information Science & Technology,Qingdao University of Science & Technology,Qingdao 266061,China;2.Engineering Research Center of Integration and Application of Digital Learning Technology,Ministry of Education,Beijing 100039,China;3.Department of Electrical and Computer Engineering,University of Victoria,Victoria V8W 3P6,Canada)
Abstract:
To improve the spectrum utilization,an underwater acoustic intelligent spectrum sensing algorithm based on federated learning(FL),Transformer and convolutional neural network(CNN) is proposed.Firstly,information sharing in a data isolation state is realized based on FL,and Paillier encryption technology is applied to guarantee weight encryption.Secondly,the local sensing data is constructed into a time-frequency spectrum by continuous wavelet transform.Finally,a TransCNN perceptron is constructed by combining CNN and Transformer,and high-precision perception is achieved through parallel branches.Compared with that of RepVGG,Swin-Transformer,YOLOv7,and MobileNet algorithms,the average detection probability of the proposed algorithm based on the FL-TransCNN neural network is improved by 4% to 10% and the average false alarm probability is reduced by 2% to 9% in -18 dB to 0 dB signal-to-noise ratio.
Key words:  marine Internet of Things  intelligent spectrum sensing  federated learning  continuous wavelet transform  depthwise separable convolution
安全联盟站长平台