| 摘要: |
| 由于干扰及网络拓扑的快速变化,在去中心化的无人机网络中实现路由与资源分配的优化仍面临诸多挑战。提出了一种新颖的框架,融合了双深度Q网络与图神经网络,以实现路由和无线资源分配的联合优化。该框架采用图神经网络对网络拓扑进行建模,并利用双深度Q网络自适应调控路由和资源分配,从而有效解决干扰问题并提高系统性能。仿真结果表明,与传统方法(如目的地最近法、最大信噪比法及基于多层感知器的模型)相比,所提方法吞吐量提升约23.5%,连接概率提高约50%,跳数减少约17.6%,验证了其在动态无人机网络中的有效性。 |
| 关键词: 分布式无人机网络 资源分配 路由算法 图神经网络 双深度Q网络 深度强化学习 |
| DOI:10.20079/j.issn.1001-893x.250208001 |
|
| 基金项目:国家自然科学基金资助项目(61971327);广州市重点科技研究与开发计划(202206030003) |
|
| Joint Optimization of Routing and Resource Allocation in Decentralized UAV Networks Based on DDQN and GNN |
| Nawaf Q.H.Othman,YANG Qinghai,JIANG Xinpei |
| (1.School of Communication Engineering,Xidian University,Xi’an 710071,China;2.Department of Electric and Computer Engineering,University of Illinois at UrbanaChampaign,Urbana,IL 61801,USA;2.Department of Electric and Computer Engineering,University of Illinois at UrbanaChampaign,Urbana,IL 61802,USA;2.Department of Electric and Computer Engineering,University of Illinois at UrbanaChampaign,Urbana,IL 61803,USA) |
| Abstract: |
| Optimizing routing and resource allocation in decentralized unmanned aerial vehicle(UAV) networks remains challenging due to interference and rapidly changing topologies.The authors introduce a novel framework combining double deep Qnetworks(DDQNs) and graph neural networks(GNNs) for joint routing and resource allocation.The framework uses GNNs to model the network topology and DDQNs to adaptively control routing and resource allocation,addressing interference and improving network performance.Simulation results show that the proposed approach outperforms traditional methods such as ClosesttoDestination(c2Dst),MaxSINR(mSINR),and MultiLayer Perceptron(MLP)based models,achieving approximately 23.5% improvement in throughput,50% increase in connection probability,and 17.6% reduction in number of hops,demonstrating its effectiveness in dynamic UAV networks. |
| Key words: decentralized UAV network resource allocation routing algorithm GNN DDQN DRL |