首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 黄国强,付静怡,徐景.基于随机森林的高阶调制识别方法[J].电讯技术,2026,66(1): - .    [点击复制]
  • HUANG Guoqiang,FU Jingyi,XU Jing.Random Forest-based Higher-order Modulation Recognition Approach[J].,2026,66(1): - .   [点击复制]
【HTML】 【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 50次   下载 30 本文二维码信息
码上扫一扫!
基于随机森林的高阶调制识别方法
黄国强,付静怡,徐景
0
(1.西南电子技术研究所,成都 610036;2.华东师范大学 通信与电子工程学院,上海 200062)
摘要:
针对传统随机森林调制识别算法计算量大且无法应用于高阶调制格式识别的问题,提出了一种基于特征筛选的随机森林调制识别方法。首先,提出了一种通过相位信息构建新信号的方法提取高阶矩谱特征和高阶累积量特征,使随机森林分类器的调制识别准确率能力从低阶FSK、PSK、16QAM和MSK信号扩展到32APSK、64APSK(16+16+16+16)、64APSK(8+16+20+20)、128APSK和256APSK信号。其次,从9种特征中筛选出皮尔逊相关系数较小的信号特征作为随机森林分类器的输入,保留了最具代表性的特征信息的同时进一步减少了计算量。该模型对关注的高级调制格式有着良好的调制识别能力,在信噪比为7 dB时调制识别准确率可达95%以上。
关键词:  高阶调制识别  随机森林  皮尔逊相关系数
DOI:10.20079/j.issn.1001-893x.240831002
基金项目:
Random Forest-based Higher-order Modulation Recognition Approach
HUANG Guoqiang,FU Jingyi,XU Jing
(1.Southwest China Institute of Electronic Technology,Chengdu 610036,China;2.School of Communication and Electronic Engineering,East China Normal University,Shanghai 200062,China)
Abstract:
For the problem that the traditional random forest modulation identification algorithm is computationally intensive and cannot be applied to the identification of higher-order modulation formats,a random forest modulation identification model based on feature screening is proposed.Firstly,a new signal is constructed by extracting the instantaneous phases of eleven modulation formats,and the higher-order moment spectrum features and higher-order cumulants of these signals are extracted to extend the classification capability of the random forest modulation recognition model from low-order FSK,PSK,16QAM and MSK signals for classification of 32APSK,64APSK(16+16+16+16),64APSK(8+16+20+20),128APSK and 256APSK signals.Secondly,the signal features with smaller Pearson correlation coefficients are selected from the nine features as inputs to the random forest classifier,which retains the most representative feature information while further reducing the computational effort.This model has outstanding classification ability for the high-order modulation formats of interest,and the classification accuracy can reach more than 95% at a signal-to-noise ratio of 7 dB.
Key words:  higher order modulation recognition  random forest  Pearson correlation coefficient
安全联盟站长平台