首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 曹明华,王瑞,张悦,等.注意力和LSTM辅助的残差FTN-FSO端到端通信系统[J].电讯技术,2025,(12):2053 - 2061.    [点击复制]
  • CAO Minghua,WANG Rui,ZHANG Yue,et al.An Attention and LSTM-assisted Residual FTN-FSO End-to-End Communication System[J].,2025,(12):2053 - 2061.   [点击复制]
【HTML】 【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 196次   下载 98 本文二维码信息
码上扫一扫!
注意力和LSTM辅助的残差FTN-FSO端到端通信系统
曹明华,王瑞,张悦,张霞,王惠琴
0
(1.兰州理工大学 计算机与通信学院,兰州 730050;2.聊城大学 物理科学与信息工程学院,山东 聊城 252000;3.山东省光通信科学与技术重点实验室,山东 聊城 252000)
摘要:
为了更有效地消除超奈奎斯特(Faster-Than-Nyquist,FTN)无线光通信系统中大气湍流效应和码间干扰的影响,进一步提升系统误码性能,在卷积自编码器的基础上,提出了一种注意力和长短时记忆网络(Long Short-Term Memory,LSTM)辅助的残差FTN无线光端到端通信系统。根据FTN信号受相邻信号影响的特点,在系统发射端引入LSTM网络来提取FTN信号特征;同时,将注意力机制引入到接收端来增强其对接收信号的恢复能力;再将残差网络引入到系统中,来获取更高的分类精度,且加速系统的收敛速度。在此基础上,探讨了该系统在不同条件因素影响下的系统最佳训练信噪比。仿真结果证明,改进后的自编码器系统在Mazo限内取得了与奈奎斯特系统相近的误码性能,并且在强湍流信道下,能够明显改善系统 “误差下限”的问题,当信噪比为32 dB时将误符号率控制到10-3以下。
关键词:  无线光通信  超奈奎斯特  端到端学习  大气湍流信道
DOI:10.20079/j.issn.1001-893x.240604002
基金项目:国家自然科学基金资助项目(62265010,61875080,62261033);甘肃省自然科学基金(24JRRA183);山东省自然科学基金(ZR2022MF284)
An Attention and LSTM-assisted Residual FTN-FSO End-to-End Communication System
CAO Minghua,WANG Rui,ZHANG Yue,ZHANG Xia,WANG Huiqin
(1.School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China;2.School of Physics Science and Information Engineering,Liaocheng University,Liaocheng 252000,China;3.Provincial Key Laboratory of Optical Communications Science and Technology,Liaocheng 252000,China)
Abstract:
In order to effectively eliminate the impact of atmospheric turbulence and inter-symbol interference in faster-than-Nyquist(FTN) optical wireless communication systems,and further enhance the system’s bit error rate(BER) performance,a novel end-to-end FTN optical wireless communication system is proposed by incorporating an attention mechanism and long short-term memory(LSTM) network into a convolutional autoencoder.The LSTM network is introduced at the transmitter to extract FTN signal features considering their dependency on adjacent signals.Meanwhile,the receiver employs an attention mechanism to improve its ability in recovering the received signal.Additionally,a residual network is integrated into the system to achieve higher classification accuracy and accelerate convergence speed.Furthermore,the optimal training signal-to-noise ratio(SNR) under different conditions is discussed.Simulation results demonstrate that the improved system achieves comparable BER performance as Nyquist system within the Mazo limit.Moreover,it effectively addresses the “error floor” issue under strong turbulence channels by controlling the false symbol rate to below 10-3 when the SNR is 32 dB.
Key words:  optical wireless communication  faster-than-Nyquist  end-to-end learning  atmospheric turbulence channel
安全联盟站长平台