首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 李乾,刘卓伦,孙晓云,等.一种基于LightGBM的UWB非视距识别方法[J].电讯技术,2025,65(11): - .    [点击复制]
  • LI Qian,LIU Zhuolun,SUN Xiaoyun,et al.A UWB Non-Line-of-Sight Recognition Method Based on LightGBM[J].,2025,65(11): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 176次   下载 101 本文二维码信息
码上扫一扫!
一种基于LightGBM的UWB非视距识别方法
李乾,刘卓伦,孙晓云,陈勇,宋士济,张醒龙
0
(1.国网河北省电力有限公司石家庄供电分公司,石家庄 050004;2.石家庄铁道大学 电气与电子工程学院,石家庄 050043)
摘要:
针对超宽带非视距(Non-Line-of-Sight,NLOS识别中最优特征子集选取与模型参数优化问题,提出了一种基于轻量级梯度提升机(Light Gradient Boosting Machine,LightGBM的交叉验证递归特征消除算法与Optuna参数调优相结合的NLOS识别方法。首先通过递归特征消除加交叉验证算法分析选取首径信号与总信号接收功率差值、噪声最大值等6个重要特征作为最优特征子集,之后使用Optuna调参框架优化LightGBM模型超参数。采集视距与非视距特征数据,使用支持向量机、极限梯度提升算法和参数优化后的LightGBM等模型进行训练与测试,结果表明,所选取特征具有良好区分性,参数优化后的LightGBM模型识别准确率达95.28%。
关键词:  超宽带非视距识别  轻量级梯度提升机(LightGBM  交叉验证递归特征消除算法(RFECV  超参数优化
DOI:10.20079/j.issn.1001-893x.240530003
基金项目:国网河北省电力有限公司项目(kj2021-024
A UWB Non-Line-of-Sight Recognition Method Based on LightGBM
LI Qian,LIU Zhuolun,SUN Xiaoyun,CHEN Yong,SONG Shiji,ZHANG Xinglong
(1.Shijiazhuang Power Supply Branch of State Grid Hebei Electric Power Co.,Ltd.,Shijiazhuang 050004,China;2.School of Electrical and Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China)
Abstract:
For the optimal feature subset selection and model parameter optimization in ultra-wideband non-line-of-sight(NLOS recognition,a new NLOS recognition method based on the cross-validation recursive feature elimination algorithm of Light Gradient Boosting Machine(LightGBM and Optuna parameter tuning is proposed.First,six important features,including the difference between the first path signal and the total received signal power,and the maximum noise,are selected as the optimal feature subset using the recursive feature elimination and cross-validation algorithm.Then,Optuna is used to optimize the hyperparameters of LightGBM model.Line-of-sight and non-line-of-sight feature data is collected,and the Support Vector Machine,Extreme Gradient Boosting algorithm,and parameter-optimized LightGBM model are trained and tested.The results demonstrate that the selected features exhibit excellent discriminative ability,with the optimized LightGBM model achieving a recognition accuracy of 95.28%.
Key words:  UWB NLOS recognition  light gradient boosting machine(LightGBM  recursive feature elimination with cross validation(RFECV  hyperparameter optimization
安全联盟站长平台