首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 林国军,龚涛,林通.图像分类任务中的注意力机制研究综述[J].电讯技术,2025,(8):1349 - 1362.    [点击复制]
  • LIN Guojuna,b,GONG Taoa.A Survey of Attention Mechanisms in Image Classification Tasks[J].,2025,(8):1349 - 1362.   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 220次   下载 0 本文二维码信息
码上扫一扫!
图像分类任务中的注意力机制研究综述
林国军,龚涛,林通
0
(1.四川轻化工大学 a.人工智能四川省重点实验室;b.自动化与信息工程学院,四川 宜宾 644000;2.北京大学 智能学院,北京 100871)
摘要:
在深度学习领域中,注意力机制因其出色的性能以及即插即用的便捷性,在图像处理任务中得到了广泛应用。介绍了通道注意力机制、空间注意力机制以及通道与空间混合注意力机制这3类主流注意力机制的核心思想和实现方法。通过对比分析它们之间的优势与缺陷,探讨了注意力机制所存在的挑战与问题,给出了采用VGGNet(Visual Geometry Group Network)模型对注意力机制在图像分类任务中的性能评测结果。最后,展望了注意力机制未来的发展趋势,以期为后续研究提供有价值的参考与启示。
关键词:  图像处理  图像分类  深度学习  注意力机制
DOI:10.20079/j.issn.1001-893x.241105001
基金项目:四川省科技计划项目(2024YFHZ0026)
A Survey of Attention Mechanisms in Image Classification Tasks
LIN Guojuna,b,GONG Taoa
(1a.Sichuan Provincial Key Laboratory of Artificial Intelligence;1b.College of Automation and Information Engineering,Sichuan Light Chemical Engineering University,Yibin 644000,China;2.School of Intelligence,Peking University,Beijing 100871,China)
Abstract:
In the field of deep learning,the attention mechanism,due to its outstanding performance and the convenience of plug-and-play,has been widely applied in image processing tasks.The authors introduce the core ideas and implementation methods of three mainstream attention mechanisms including channel attention mechanism,spatial attention mechanism,and channel and spatial mixed attention mechanism,discuss the challenges and problems existing in the attention mechanism by comparing and analyzing their advantages and disadvantages,provide the performance evaluation result of visual geometry group network(VGGNet) model in image classification tasks,and finally look forward to the future development trends of the attention mechanism,in hope of providing valuable references and inspirations for subsequent research.
Key words:  image processing  image classification  deep learning  attention mechanism
安全联盟站长平台