首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 石琴琴,丛新龙,傅阳阳,等.一种应用引力搜索算法改进的DV-Hop模型[J].电讯技术,2025,(8):1306 - 1314.    [点击复制]
  • SHI Qinqin,CONG Xinlong,FU Yangyang,et al.An Improved DV-Hop Model Using Gravity Search Algorithm[J].,2025,(8):1306 - 1314.   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 172次   下载 0 本文二维码信息
码上扫一扫!
一种应用引力搜索算法改进的DV-Hop模型
石琴琴,丛新龙,傅阳阳,张建平
0
(1.上海应用技术大学 计算机科学与信息工程学院,上海201418;2.华车科技股份有限公司,上海 200050)
摘要:
针对无线传感器网络节点定位模型DV-Hop(Distance Vector Hop)的各向异性网络应用适应性问题,提出了一种基于引力搜索算法优化的改进DV-Hop模型。首先,用平均跳距衡量信标间路径的曲折度并据此排序,有序提取未知节点,检索出对应的定位信标组合并完成距离估计,以此获得在当前网络拓扑条件下最优的定位计算条件;进而,将未知节点定位问题建模为非线性方程组求解问题,组合使用Min-Max算法和引力搜索算法,初始化种群并完成迭代求解。实验结果表明,与原DV-Hop模型和相关文献提出的3种典型改进模型DBO-DV-Hop、IMSSA-DV-Hop和OANS-DV-Hop相比,所提的改进模型可分别降低约52.1%、13.5%、18.8%和13.1%的平均定位误差,且对网络拓扑变化具有较强的鲁棒性,从而为保证DV-Hop模型在实际应用中的定位精度提供了一种可行方案。
关键词:  无线传感器网络  DV-Hop  节点定位  平均跳距  引力搜索算法
DOI:10.20079/j.issn.1001-893x.240119004
基金项目:上海市联盟计划项目(LM201973);上海应用技术大学协同创新项目(XTCX2023-24)
An Improved DV-Hop Model Using Gravity Search Algorithm
SHI Qinqin,CONG Xinlong,FU Yangyang,ZHANG Jianping
(1.School of Computer Science & Information Engineering,Shanghai Institute of Technology,Shanghai 201418,China;2.Sino Parking Tech Co.,Ltd.,Shanghai 200050,China)
Abstract:
For the anisotropic network application adaptability of node localization model distance vector hop(DV-Hop) in wireless sensor networks,an improved DV-Hop model based on gravity search algorithm is proposed.First,the meandering degree of the path between beacons is measured by average hop distance and sorted accordingly.Each unknown node is extracted in order.Its corresponding beacon combination for the localization is retrieved,and the distances between the unknown node and the beacons in the combination are estimated,so as to obtain the optimal position calculation conditions under the current network topology.Then,the localization problem of unknown nodes is modeled as a nonlinear equation solving problem,and the Min-Max algorithm and gravity search algorithm are combined to initialize the population and complete the iterative solution.The experimental results show that compared with the original DV-Hop model and the three typical improved models proposed in related literatures,DPO-DV-hop,IMSSA-DV-Hop and OANS-DV-Hop,the improved model can reduce the localization errors of about 52.1%,13.5%,18.8% and 13.1%,respectively.Moreover,it has strong robustness to network topology changes.The proposed scheme provides a feasible way to ensure the positioning accuracy of DV-Hop model in practical applications.
Key words:  wireless sensor network  DV-Hop  node localization  average hop distance  gravity search algorithm
安全联盟站长平台