摘要: |
为提升相干信号波达方向(Direction of Arrival,DOA)估计性能,提出了一种稀疏阵列结构及其基于缺失纤维张量分解的信号处理方法。该阵列包含多个阵元组,每个阵元组内有两个间距为信号半波长的阵元,相邻阵元组间距相同且大于半波长,因此该阵列同时具有大阵列孔径及多重不变性结构。利用阵列的多重不变性结构,提出基于张量的前后向空间平滑算法进行解相干预处理,得到一个等效的大孔径稀疏阵列且其入射信号不相关。通过填充虚拟阵元将稀疏阵列转换为相邻阵元间距为半波长的虚拟均匀线阵。对该虚拟线阵进行缺失纤维张量建模并利用缺失纤维张量分解完成信号DOA估计。分析表明,在物理阵元数相同的情况下,新阵列孔径相较均匀线阵扩大了约5倍,相比经典的互质阵列扩大了约1倍,因此具有更优的相干信号DOA估计精度和角分辨率性能。仿真结果证明了新方法的有效性。 |
关键词: 稀疏阵列;相干信号;波达方向估计 缺失纤维张量 |
DOI:10.20079/j.issn.1001-893x.250112001 |
|
基金项目:国家自然科学基金资助项目(61961025);江西省自然科学基金项目(20202BABL202001) |
|
DOA Estimation for Coherent Signals in Sparse Arrays via Missing Fiber Tensor Decomposition |
FAN Hongming,YANG Xiaorong,RAO Wei |
(School of Network Engineering,Jiangxi University of Software Professional Technology,Nanchang 330041,China) |
Abstract: |
To improve the direction of arrival(DOA) estimation performance of coherent signals,a sparse array structure and the corresponding signal processing method based on missing fiber tensor decomposition are proposed.This array contains multiple array groups,and each array group contains two elements spaced at half the wavelength of the signal.The distance between adjacent array groups is the same and greater than half the wavelength.Thus,the array has not only the larger array aperture but also the multiple invariance structure.By exploiting the array搒 multiple invariance structures,a tensor-based forward-backward spatial smoothing algorithm is proposed for decorrelation processing,yielding an equivalent large-aperture sparse array with uncorrelated incident signals.By populating virtual elements,the sparse array is transformed into a virtual uniform linear array(ULA) with adjacent elements spaced at half-wavelength intervals.A missing fiber tensor model is constructed for this virtual ULA,and signal DOA estimation is accomplished via missing fiber tensor decomposition.The analysis indicates that with the same number of physical array elements,the new array configuration achieves an aperture approximately five times larger than that of a uniform linear array and about twice that of classical coprime arrays,thereby demonstrating superior performance in coherent signal DOA estimation accuracy and angular resolution.The simulation results demonstrate the effectiveness of the new method. |
Key words: sparse array coherent signal DOA estimation missing fiber tensor decomposition |