首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 薛建彬,高佳敏.大规模MIMO低压缩比条件下的CSI反馈轻量化估计[J].电讯技术,2025,(8):1231 - 1239.    [点击复制]
  • XUE Jianbin,GAO Jiamin.Lightweight Estimation of Low Compression Ratio CSI Feedback for Massive MIMO Systems[J].,2025,(8):1231 - 1239.   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 138次   下载 0 本文二维码信息
码上扫一扫!
大规模MIMO低压缩比条件下的CSI反馈轻量化估计
薛建彬,高佳敏
0
(兰州理工大学 计算机与通信学院,兰州 730050)
摘要:
通过压缩信道状态信息(Channel Status Information,CSI)传输码字降低大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统的CSI反馈开销,可以有效减少计算资源的使用和信息传输时间的消耗。针对如何使用轻量化模型准确估计低压缩比条件下CSI反馈的问题,通过设计的轻量化迭代交叉网络(Iterative Cross Network,ICNet)模型,在用户端使用设计的迭代压缩模块压缩CSI反馈,基站端使用设计的迭代重建模块估计CSI反馈,以较高的准确率和较低的时间消耗估计了低压缩比条件下的CSI反馈。在COST2100模型生成的数据样本下评估了ICNet在低压缩比条件下的鲁棒性,实验表明,在较小的1/64压缩比条件下,ICNet的归一化均方误差比次优值降低了8.48%,ICNet的参数量降低了35%左右。
关键词:  大规模MIMO  CSI反馈  交叉卷积  低压缩比  轻量化估计
DOI:10.20079/j.issn.1001-893x.240419003
基金项目:甘肃省科技计划(23YFGA0062);甘肃省创新基金(2022A-215)
Lightweight Estimation of Low Compression Ratio CSI Feedback for Massive MIMO Systems
XUE Jianbin,GAO Jiamin
(School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China)
Abstract:
Reducing the channel status information(CSI) feedback overhead of massive multiple-input multiple-output(MIMO) by compressing the CSI transmission codewords can effectively reduce the use of computing resources and the consumption of information transmission time.For the problem of how to use the lightweight model to accurately estimate the CSI feedback under the condition of low compression ratio,the lightweight iterative cross network(ICNet) model is designed,the designed iterative compression module is used to compress the CSI feedback at the user end,and the designed iterative reconstruction module is used to estimate the CSI feedback at the base station,and the CSI feedback is estimated under the low compression ratio condition with high accuracy and low time consumption.The robustness of ICNet under low compression ratio conditions is evaluated under the data samples generated by COST2100 model.Experiments show that when the small compression ratio is 1/64,the normalized mean squared error of ICNet is reduced by 8.48% compared with the suboptimal value,and the number of parameters of ICNet is reduced by about 35%.
Key words:  massive MIMO  CSI feedback  cross convolution  low compression ratio  lightweight estimation
安全联盟站长平台