首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 张天骐,吴云戈,吴仙越,等.基于多任务学习的通用滤波多载波调制识别与信噪比估计[J].电讯技术,2025,(8):1213 - 1220.    [点击复制]
  • ZHANG Tianqi,WU Yunge,WU Xianyue,et al.UFMC Modulation Recognition and SNR Estimation Based on Multi-task Learning[J].,2025,(8):1213 - 1220.   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 204次   下载 0 本文二维码信息
码上扫一扫!
基于多任务学习的通用滤波多载波调制识别与信噪比估计
张天骐,吴云戈,吴仙越,李春运
0
(重庆邮电大学 通信与信息工程学院,重庆400065)
摘要:
非协作通信通用滤波多载波(Universal Filtered Multi-carrier,UFMC)信号子载波所存在的调制识别以及信噪比估计问题有待解决,但目前研究只针对于单一任务。对此,提出一种利用多任务学习框架的神经网络模型,同时解决调制识别以及信噪比估计任务。首先得到UFMC系统接收端信号,求解出信号同相正交分量作为输入特征;接着在多任务学习框架上构建神经网络,采用的神经网络是将卷积神经网络与长短时记忆网络串联;最后利用上述模型对两个任务进行联合求解。实验结果表明,所构建多任务学习模型性能优于单任务学习,在信噪比为0 dB时,子载波调制识别准确率提升7.71%,信噪比估计均方误差减小45.6%。
关键词:  通用滤波多载波(UFMC)  调制识别  信噪比估计  多任务学习  神经网络
DOI:10.20079/j.issn.1001-893x.240421001
基金项目:重庆市自然科学基金项目(cstc2021jcyj-msxmX0836)
UFMC Modulation Recognition and SNR Estimation Based on Multi-task Learning
ZHANG Tianqi,WU Yunge,WU Xianyue,LI Chunyun
(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
Abstract:
The modulation recognition and signal-to-noise ratio(SNR) estimation problems of the subcarriers of the universal filter multi-carrier(UFMC)signal in non-cooperative communication need to be solved,but the current research only focuses on a single task.Therefore,a neural network model using a multi-task learning framework is proposed to solve the modulation recognition and SNR estimation tasks at the same time.Firstly,the receiver signal of the UFMC system is obtained,and the orthogonal component of the signal is solved as the input feature.Then,a neural network is constructed on the multi-task learning framework.The neural network adopted is a convolution neural network and a long short-term memory network in series.Finally,the above model is used to solve the two tasks jointly.Experimental results show that the performance of the multi-task learning model constructed is better than that of single-task learning.When the SNR is 0 dB,the accuracy of subcarrier modulation recognition is improved by 7.71%,and the mean square error of SNR estimation is reduced by 45.6%.
Key words:  universal filtered multi-carrier(UFMC)  modulation identification  SNR estimation  multi-task learning  neural network
安全联盟站长平台