首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 陈瑞霞,张善文,吴青娥.基于多尺度上下文注意力U-SegNet的遥感目标检测[J].电讯技术,2025,(8):1187 - 1195.    [点击复制]
  • CHEN Ruixia,ZHANG Shanwen,WU Qing揺.Remote Sensing Target Detection Based on Multi-scale Contextual Attention U-SegNet[J].,2025,(8):1187 - 1195.   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 322次   下载 0 本文二维码信息
码上扫一扫!
基于多尺度上下文注意力U-SegNet的遥感目标检测
陈瑞霞,张善文,吴青娥
0
(1.郑州西亚斯学院 电信与智能制造学院,郑州 451150;2.河南省农业信息数智化工程研究中心,郑州 451150;3.上海第二工业大学 计算机与信息工程学院,上海 201209)
摘要:
针对遥感目标图像多样、目标较小且与周围环境对比度差,导致现有目标检测方法复杂度高、检测效果差、泛化能力弱,以及经典U-Net和U-SegNet忽略了不同目标尺度特征感受野差异等问题,提出了一种基于多尺度上下文注意力U-SegNet(Multi-scale Context Attention U-SegNet,MSCAUSNet)的遥感目标检测新模型。该模型由U-SegNet、多尺度特征融合(Multi-scale Feature Fusion,MSFF)和多尺度上下文注意力(Multi-scale Context Attention,MSCA)模块组成,采用MSCA代替U-SegNet中的跳跃连接以融合目标低层特征与高层特征,并通过MSFF和MSCA模块充分捕获多尺度上下文特征,从而显著提升遥感多尺度目标检测性能。在遥感目标图像数据集上的实验结果表明,该模型能够有效检测不同尺度遥感目标,较经典U-Net和U-SegNet的检测精度分别提高了7.94%和5.09%。该模型为遥感目标检测和识别系统提供了技术支持。
关键词:  遥感多尺度目标检测  多尺度上下文注意力U-SegNet  多尺度上下文注意力  多尺度特征融合
DOI:10.20079/j.issn.1001-893x.241114005
基金项目:河南省科技攻关项目(232102210034,242102210021);河南省教育厅项目(25A520049);郑州西亚斯学院重点学科信息与通信工程(0810)
Remote Sensing Target Detection Based on Multi-scale Contextual Attention U-SegNet
CHEN Ruixia,ZHANG Shanwen,WU Qing揺
(1.School of Telecommunications and Intelligent Manufacturing,Zhengzhou Sias University,Zhengzhou 451150,China;2.Henan Agricultural Information Digital Intelligence Engineering Research Center,Zhengzhou 451150,China;3.School of Computer and Information Engineering,Shanghai Polytechnic University,Shanghai 201209,China)
Abstract:
To solve the problems of high complexity,poor detection effect and weak generalization of existing remote sensing target detection models due to the variety of remote sensing target images,small target and low contrast with the surrounding environment,and the fact that U-Net and U-SegNet ignore the difference in the receptive field of different scale features,a multi-scale context attention U-SegNet(MSCAUSNet) is constructed.It consists of U-SegNet,multi-scale feature fusion(MSFF) and multi-scale context attention(MSCA) modules.In the model,MSCA instead of skip connections in U-SegNet is used to fuse low-level and high-level features of the target,and multi-scale context feature is captured by MSFF and MSCA modules,thus significantly improving the detection performance of remote sensing multiscale targets.The experimental results on the remote sensing target image dataset show that the proposed model is effective for remote sensing multiscale target detection.Compared with that of the original U-Net and U-SegNet,the detection rate of MSCAUSNet is increased by 7.94% and 5.09%,respectively.The proposed model provides a technical support for remote sensing target detection and recognition system.
Key words:  remote sensing multi-scale target detection  multi-scale context attention U-SegNet  multi-scale context attention  multi-scale feature fusion
安全联盟站长平台