首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 查坤,安永丽,刘英超,等.应用距离裁剪策略的改进k均值聚类量化算法[J].电讯技术,2025,65(7):1078 - 1086.    [点击复制]
  • ZHA Kun,AN Yongli,LIU Yingchao,et al.Improved k-Means Clustering Quantization Algorithm with Distance Trimming Strategy[J].,2025,65(7):1078 - 1086.   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 255次   下载 124 本文二维码信息
码上扫一扫!
应用距离裁剪策略的改进k均值聚类量化算法
查坤,安永丽,刘英超,宋文丰
0
(华北理工大学 人工智能学院,河北 唐山 063210)
摘要:
为进一步提高物理层密钥生成过程中量化阶段的密钥一致性和可靠性,提出了一种基于距离的样本筛选策略。该策略通过测量样本与聚类中心的欧氏距离差,评估分类不确定性,剔除高不确定度样本以减少噪声干扰。仿真结果表明,在 k 均值量化算法和补偿 k 均值量化算法中引入该策略后,当单个样本量化为 5比特时,分类不一致率分别降低 8.1% 和 11.7%;量化为单比特时,分别降低 63.4% 和 89.3%。
关键词:  物理层安全  密钥生成  信道量化:k均值聚类  距离裁剪策略
DOI:10.20079/j.issn.1001-893x.250114002
基金项目:唐山市人才项目(B202302013);唐山市科技项目(24130215C)
Improved k-Means Clustering Quantization Algorithm with Distance Trimming Strategy
ZHA Kun,AN Yongli,LIU Yingchao,SONG Wenfeng
(College of Artificial Intelligence,North China University of Science and Technology,Tangshang 063210,China)
Abstract:
A distance-based sample screening strategy is proposed to enhance key consistency during physical layer key generation.The strategy evaluates classification uncertainty by calculating the Euclidean distance difference between samples and clustering centers,then eliminates high-uncertainty samples to reduce noise interference.Simulation results show that when applied to k-Means quantization and compensated k-Means quantization,the classification inconsistency rate decreases by 8.1% and 11.7% for 5-bit quantization,and by 63.4% and 89.3% for 1-bit quantization,respectively.
Key words:  physical layer security  key generation  channel quantization  k-Means clustering  distance trimming strategy
安全联盟站长平台