首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 赵青,察豪,牟伟琦,等.一种基于改进YOLOv7的无人机多目标光学检测方法[J].电讯技术,2024,(8):1213 - 1218.    [点击复制]
  • ZHAO Qing,CHA Hao,MU Weiqi,et al.A Multi-target Optical Detection Method for UAVBased on Improved YOLOv7[J].,2024,(8):1213 - 1218.   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 1535次   下载 906 本文二维码信息
码上扫一扫!
一种基于改进YOLOv7的无人机多目标光学检测方法
赵青,察豪,牟伟琦,罗宇
0
(1.海军工程大学 电子工程学院,武汉 430033;2.中国人民解放军32212部队,北京 100036)
摘要:
为解决由于空中多目标及其多尺度特征导致的目标检测召回率低、精确度低等问题,提出了一种基于YOLOv7改进的无人机多目标光学检测方法。针对无人机蜂群目标,使用K-means算法对自制的多尺度无人机数据集(Multi Scale Drone Dataset,MSDD)优化聚类,对原有YOLOv7锚框进行增改;在特征融合网络部分加深网络层数,使更深层的特征与浅表特征进一步融合,增强小尺度目标的特征表达能力;在网络预测部分增加一个极小目标预测头,有效增强多尺度、多目标的检测性能。较原YOLOv7算法,改进算法在自制数据集上mAP达到75.69%,提升了6.25%,对于多尺度特征的无人机多目标检测具有更好检测效果。
关键词:  无人机蜂群  光学检测  空中多目标检测  多尺度特征  特征融合
DOI:10.20079/j.issn.1001-893x.230704002
基金项目:
A Multi-target Optical Detection Method for UAVBased on Improved YOLOv7
ZHAO Qing,CHA Hao,MU Weiqi,LUO Yu
(1.College of Power Engineering,Naval University of Engineering,Wuhan 430033,China;2.Unit 32212 of PLA,Beijing 100036,China)
Abstract:
To solve the problems of slow detection speed and poor recognition in aerial multi-target detection with multi-scale features,an unmanned aerial vehicle(UAV) target detection algorithm based on improved YOLOv7 is proposed. For UAV swarm target,anchors of YOLOv7 are changed by using K-means algorithm to optimize the clustering of the self-built multi-scale drone dataset(MSDD).The network layers are extended in the neck network,so that the feature expression ability of small-scale targets is enhanced by further fusion of deeper features and superficial features.A minimal target prediction layer is added into the head network to improve the multi-scale and multi-target detection accuracy.Compared with that of the original YOLOv7 algorithm,the mAP of the improved algorithm reaches 75.69 % on the self-built dataset,which is improved by 6.25 %.The algorithm has better detection performance for UAV multi-target detection with multi-scale features.
Key words:  UAV swarm  optical detection  aerial multi-target detection  multi-scale features  feature fusion
安全联盟站长平台