首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 李博扬,刘洋,万诺天,等.基于强化学习的无人机电磁干扰感知与抗干扰传输方法[J].电讯技术,2023,(12):1855 - 1861.    [点击复制]
  • LI Boyang,LIU Yang,WAN Nuotian,et al.An Electromagnetic Jamming Sensing and Anti-jamming Transmission Method of UAV Based on Reinforcement Learning[J].,2023,(12):1855 - 1861.   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 2165次   下载 1905 本文二维码信息
码上扫一扫!
基于强化学习的无人机电磁干扰感知与抗干扰传输方法
李博扬,刘洋,万诺天,许魁,夏晓晨,张月月,张咪
0
((陆军工程大学 通信工程学院,南京 210007))
摘要:
无人机对于无线信道的依赖性和无线传播环境的开放性,导致其通信易受到恶意的电磁干扰。针对其中恶意的信道跟随干扰,在感知干扰信道信息的基础上,将无人机的发射功率和信道选择策略建模为马尔科夫决策过程(Markov Decision Process,MDP),利用强化学习算法对该通信系统的抗干扰方法进行智能优化,提出了基于赢或快学习策略爬山算法(Win or Learn Fast Policy Hill-climbing,WoLF-PHC)的抗干扰算法。仿真结果证明,所提算法能够将用户干信比降低至0.1以下,将用户可达速率在初始值基础上提升14%,与Q学习算法和PHC算法相比具有更好的抗干扰传输性能。
关键词:  无人机(UAV)  抗干扰  电磁干扰感知  强化学习
DOI:10.20079/j.issn.1001-893x.230401001
基金项目:国家自然科学基金资助项目(62071485,62271503,62001513);江苏省自然科学基金项目(BK20201334,BK20201334,BK20200579,BK20231485)
An Electromagnetic Jamming Sensing and Anti-jamming Transmission Method of UAV Based on Reinforcement Learning
LI Boyang,LIU Yang,WAN Nuotian,XU Kui,XIA Xiaochen,ZHANG Yueyue,ZHANG Mi
((College of Communications Engineering,Army Engineering University of PLA,Nanjing 210007,China))
Abstract:
The dependence on wireless channel and the openness of wireless channel make unmanned aerial vehicle(UAV) vulnerable to malicious electromagnetic jammings.To combat channel-following jamming from jammers,a reinforcement learning-based anti-jamming strategy is proposed based on the perception of jamming spectrum information.The power control and channel access strategy of UAV is modeled as Markov Decision Process(MDP),and the anti-jamming strategy of the communication system is intelligently optimized by Reinforcement Learning Algorithm.An anti-jamming algorithm based on Win or Learn Fast Policy Hill-climbing(WoLF-PHC) algorithm is proposed.The simulation results prove that the proposed algorithm can reduce the user’s Interference-to-Signal Ratio(ISR) less than 0.1,and increase the user’s achievable rate by 14% on the basis of the initial value.Compared with Q-learning Algorithm and PHC Algorithm,it has better anti-interference transmission performance.
Key words:  unmanned aerial vehicle(UAV)  anti-jamming  electromagnetic jamming sensing  reinforcement learning
安全联盟站长平台