首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 戢静红,张振宇,邓平.一种基于随机森林的LOS/NLOS基站识别方法[J].电讯技术,2023,(10):1596 - 1602.    [点击复制]
  • JI Jinghong,ZHANG Zhenyu,DENG Ping.A Random Forest-based LOS/NLOS Base Station Identification Method[J].,2023,(10):1596 - 1602.   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 6882次   下载 2171 本文二维码信息
码上扫一扫!
一种基于随机森林的LOS/NLOS基站识别方法
戢静红,张振宇,邓平
0
(西南交通大学 信息科学与技术学院,成都 611756)
摘要:
蜂窝移动通信环境复杂多变,在基站和移动台之间不可避免会出现电波的非视距(Non-Line-of-Sight,NLOS)传播,使基站和移动台之间的距离测量误差显著增大,导致定位性能急剧下降。为了准确识别出视距(Line-of-Sight,LOS)与非视距传播的基站信号,提出了一种基于随机森林的LOS/NLOS基站识别方法,通过分析移动台与各基站接收机测量距离与定位误差之间的相关性,选择LOS/NLOS测量距离作为特征进行分类器训练,再将分类器用于LOS/NLOS基站的识别。仿真结果表明,该方法对NLOS基站的正确识别率达到90%以上,能取得较好的定位性能。
关键词:  无线定位  基站信号识别  NLOS识别  机器学习  随机森林
DOI:10.20079/j.issn.1001-893x.220320001
基金项目:国家自然科学基金资助项目(61871332)
A Random Forest-based LOS/NLOS Base Station Identification Method
JI Jinghong,ZHANG Zhenyu,DENG Ping
(School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,China)
Abstract:
The cellular mobile communication environment is complex and volatile,and the Non-Line-of-Sight(NLOS) propagation of radio waves inevitably occurs between base stations and mobile stations,which causes a significant increase in the distance measurement error between base stations and mobile stations and leads to a sharp decrease in localization performance.In order to accurately identify Line-of-Sight(LOS) and NLOS base station signals,a Random Forest-based LOS/NLOS base station identification method is proposed.By analyzing the correlations between the measured distances of mobile stations and each base station receiver and the localization errors,the LOS/NLOS measured distances are selected as features for classifier training,and then the classifier is used for the identification of LOS/NLOS base stations.Simulation results show that the correct recognition rate of NLOS base stations by the method reaches more than 90
Key words:  wireless positioning  base station signal identification  NLOS identification  machine learning  random forest
安全联盟站长平台