首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 谭凯文,闫文君,宫跃,等.基于数据增强和特征嵌入的自动调制识别[J].电讯技术,2023,(7): - .    [点击复制]
  • TAN Kaiwen,YAN Wenjun,GONG Yue,et al.Automatic modulation recognition based on data enhance ment and feature embedding[J].,2023,(7): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 7186次   下载 1970 本文二维码信息
码上扫一扫!
基于数据增强和特征嵌入的自动调制识别
谭凯文,闫文君,宫跃,张婷婷
0
(海军航空大学 航空作战勤务学院,山东 烟台 264001)
摘要:
基于端到端的深度学习模型已经被广泛应用于自动调制识别。现有的深度学习方案大多数依赖于丰富的样本分布,而大批量的标记训练集通常很难获得。提出了一种基于数据驱动和选择性核卷积神经网络(Convolutional Neural Network,CNN)的自动调制识别框架。首先开发深度密集生成式对抗网络增强5种调制信号的原始数据集;其次选择平滑伪Wigner-Ville分布作为信号的时频表示,并将注意力模块用于聚焦时频图像分类中的差异区域;最后将真实信号输入轻量级卷积神经网络进行时间相关性提取,并融合信号的时频特征完成分类。实验结果表明,所提算法提高了在低信噪比情况下的识别精度,表现出较强的鲁棒性。
关键词:  自动调制识别  卷积神经网络  生成式对抗网络  注意力机制  数据增强
DOI:10.20079/j.issn.1001-893x.220304002
基金项目:国家自然科学基金资助项目(91538201);“泰山学者”工程专项经费基金(ts201511020);信息系统安全技术国家重点实验室基金资助课题(6142111190404)
Automatic modulation recognition based on data enhance ment and feature embedding
TAN Kaiwen,YAN Wenjun,GONG Yue,ZHANG Tingting
(Aviation Combat Service College,Naval Aviation University,Yantai 264001,China)
Abstract:
The end-to-end deep learning model has been effectively applied in automatic modulation recognition(AMR).Most deep learning schemes need a large number of training samples,and a large number of labeled training sets are usually difficult to obtain.The authors propose an automatic modulation recognition framework based on data-driven and selective kernel convolution neural network(CNN).Firstly,a deep dense generative adversarial network(GAN) is developed to enhance the original data set of five modulation signals.Secondly,the smooth pseudo Wigner-Ville distribution is selected as the time-frequency representation of the signal,and the attention block is used to focus the difference region in the time-frequency image classification.Finally,the real signal is input into lightweight CNN for time correlation extraction,and the time-frequency characteristics of the signal are fused to complete the classification.Experimental results show that the proposed algorithm improves the recognition accuracy in the case of low signal-to-noise ratio and shows strong robustness.
Key words:  automatic modulation recognition  convolutional neural network  generative adversarial network  attention mechanism  data enhancement
安全联盟站长平台