首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 杨 静,王朋朋,陶华伟.基于两步噪声学习网络的波束域毫米波大规模MIMO信道估计[J].电讯技术,2023,(3): - .    [点击复制]
  • YANG Jing,WANG Pengpeng,TAO Huawei.Two-step noise learning network based channel estimation for beamspace mmWave massive MIMO[J].,2023,(3): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 6402次   下载 1465 本文二维码信息
码上扫一扫!
基于两步噪声学习网络的波束域毫米波大规模MIMO信道估计
杨静,王朋朋,陶华伟
0
(河南工业大学 信息科学与工程学院,郑州 450001)
摘要:
针对波束域毫米波大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统,构建了一种新型两步噪声学习网络(Two-step Noise Learning Network,TNLNet)。基本原理是在接收信号反复经过卷积层和池化层提取噪声特征的基础上,利用波束域毫米波大规模MIMO信道矩阵稀疏性所引起的相邻元素相近的特点,采用下采样将信道矩阵重构成4个子矩阵,提高训练测试效率。该算法具有以比全卷积去噪近似消息传递(Fully Convolutional Denoising Approximate Message Passing,FCDAMP)算法和学习去噪的近似消息传递(Learned Denoising-based Approximate Message Passing,LDAMP)算法更低的复杂度,取得了比最小二乘算法、最小均方误差算法、FCDAMP和LDAMP更优的归一化均方误差(Normalized Mean Squared Error,NMSE)性能;与快速灵活去噪卷积神经网络(Fast and Flexible Denoising convolutional neural Network,FFDNet)相比虽然复杂度略高,但具有更优的NMSE性能,且在单一训练模型中获得了比FFDNet更宽的信噪比适用范围,增强了实用性。
关键词:  毫米波大规模MIMO  波束域信道估计  两步噪声学习网络(TNLNet)
DOI:10.20079/j.issn.1001-893x.220108001
基金项目:河南省教育厅自然科学项目(21A120003;22A520004);河南省重点研发与推广专项(科技攻关)(222102210146);河南工业大学青年骨干教师培育计划
Two-step noise learning network based channel estimation for beamspace mmWave massive MIMO
YANG Jing,WANG Pengpeng,TAO Huawei
(College of Information Science and Engineering,Henan University of Technology,Zhengzhou 450001,China)
Abstract:
For beamspace millimeter-wave(mmWave) massive multiple-input and multiple-output(MIMO) system,a new two-step noise learning network(TNLNet) is proposed.Firstly,the noise characteristic is extracted from the received signals through the convolution and the pooling.Then,by utilizing similar characteristics of adjacent elements caused by sparse characteristics of beamspace mmWave massive MIMO,down-sampling is implemented.Finally,four sub-matrices are reconstructed in the channel matrix,so as to improve the training and the testing efficiency.The results show that TNLNet achieves better normalized mean squared error(NMSE) performance than Least Square,Minimum Mean Square Error,Fully Convolutional Denoising Approximate Message Passing(FCDAMP) and Learned Denoising-based Approximate Message Passing(LDAMP),with lower complexity compared with FCDAMP and LDAMP.Specially,although the complexity of TNLNet is slightly higher than that of Fast and Flexible Denoising Convolutional Neural Network(FFDNet),TNLNet has better NMSE performance.Especially,TNLNet is more practical than FFDNet in a single training model.
Key words:  mmWave massive MIMO  beamspace channel estimation  two-step noise learning network(TNLNet)
安全联盟站长平台