首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 方海涛,卞 鑫,李明齐.采用残差变化控制的自适应稀疏信道估计[J].电讯技术,2022,(9): - .    [点击复制]
  • FANG Haitao,BIAN Xin,LI Mingqi.Adaptive sparse channel estimation based on residual change control[J].,2022,(9): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 6472次   下载 1371 本文二维码信息
码上扫一扫!
采用残差变化控制的自适应稀疏信道估计
方海涛,卞鑫,李明齐
0
(1.中国科学院上海高等研究院,上海 201210;2.中国科学院大学,北京 100049;中国科学院上海高等研究院,上海 201211)
摘要:
针对传统压缩感知信道估计对稀疏度信息依赖和稀疏度自适应信道估计在低信噪比时抗噪能力较差的问题,提出了一种采用残差变化控制的稀疏度自适应的压缩感知信道估计算法。该算法在传统的压缩感知信道估计的基础上引入残差变化控制,通过比较每次迭代下的残差变化的幅度来控制信道估计的迭代次数,提高信道估计的自适应性和鲁棒性。同时,为解决传统稀疏度自适应压缩感知信道估计抗噪能力较差的问题,利用正交匹配追踪提高算法的抗噪声性能。相比于传统的稀疏度自适应匹配追踪(Sparsity Adaptive Matching Pursuit,SAMP)算法,所提算法约有4 dB的性能优势,且算法复杂度更低。
关键词:  压缩感知  稀疏信道估计  残差变化控制  稀疏度自适应
DOI:
基金项目:国家重点研发计划(2019YFB1802703)
Adaptive sparse channel estimation based on residual change control
FANG Haitao,BIAN Xin,LI Mingqi
(1.Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China; 2.University of Chinese Academy of Sciences,Beijing 100049,China;Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201211,China)
Abstract:
In view of the problem that the traditional channel estimation algorithms based compressed sensing rely on the prior knowledge of the sparsity of the channel,and the sparsity adaptive channel estimation has poor anti-noise ability at low signal-to-noise ratio,a new sparsity adaptive compressed sensing channel estimation algorithm based on residual change control is proposed.In this algorithm,residual change control is introduced based on the traditional channel estimation of compressed sensing.By comparing the amplitude of residual change in each iteration,the number of iterations of channel estimation is controlled,and the adaptability and robustness of channel estimation are improved.In order to solve the problem of poor anti-noise ability of traditional sparse adaptive compressed sensing channel estimation,the orthogonal matching pursuit(OMP) is used to improve the anti-noise performance of the algorithm.Compared with the traditional sparsity adaptive matching pursuit(SAMP) algorithm,the proposed algorithm has a performance advantage of about 4 dB and lower complexity.
Key words:  compressed sensing  sparsity channel estimation  residual change control  sparsity adaptive
安全联盟站长平台