首页期刊视频编委会征稿启事出版道德声明审稿流程读者订阅论文查重联系我们English
引用本文
  • 孙延鹏,任广龙,屈乐乐,等.基于双通道GoogLeNet网络的旋翼无人机分类[J].电讯技术,2022,(8): - .    [点击复制]
  • SUN Yanpeng,REN Guanglong,QU Lele,et al.Classification of rotor UAVs based on dual-channel GoogLeNet network[J].,2022,(8): - .   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 7993次   下载 1503 本文二维码信息
码上扫一扫!
基于双通道GoogLeNet网络的旋翼无人机分类
孙延鹏,任广龙,屈乐乐,刘妍
0
(沈阳航空航天大学 电子信息工程学院,沈阳 110136;南方航空股份有限公司沈阳维修基地,沈阳 110169)
摘要:
针对利用雷达微多普勒效应的旋翼无人机识别问题,提出了一种基于双通道GoogLeNet网络的分类识别方法。首先对旋翼无人机的回波信号进行短时傅里叶变换(Short-Time Fourier Transform,STFT)从而获得信号时频谱,对时频谱沿时间轴进行傅里叶变换得到节奏速度图(Cadence-Velocity Diagram,CVD)。然后将时频图和CVD作为双通道GoogLeNet网络的输入进行特征提取用以获得回波信号的时频域和节奏速度域的特征,最后将所获得的特征输入到Softmax分类器中进而实现旋翼无人机的分类识别。基于实际雷达数据的实验结果表明,所提旋翼无人机分类方法准确率可达到98.9%。
关键词:  旋翼无人机识别  微多普勒效应  短时傅里叶变换  双通道GoogLeNet网络
DOI:
基金项目:国家自然科学基金资助项目(61671310);航空科学基金项目(2019ZC054004);辽宁省兴辽人才计划基金项目(XLYC1907134);辽宁省百千万人才工程基金项目(2018B21)
Classification of rotor UAVs based on dual-channel GoogLeNet network
SUN Yanpeng,REN Guanglong,QU Lele,LIU Yan
(College of Electronic and Information Engineering,Shenyang Aerospace University,Shenyang 110136,China;Shenyang Maintenance & Overhaul Base,China Southern Airlines Co.,Ltd.,Shenyang 110169,China)
Abstract:
For the identification problem of rotary-wing unmanned aerial vehicle(UAV) using radar micro-Doppler effect,a classification and recognition method based on dual-channel GoogLeNet network is proposed.Firstly,Short Time Fourier Transform(STFT) is carried out to obtain the signal time spectrum of the micro-Doppler echo signal of the rotorcraft UAV.The Cadence-Velocity Diagram(CVD) is obtained by Fourier transform of the time spectrum along the time axis.Then,the time-frequency diagram and CVD are used as the input of the two-channel GoogLeNet network for feature extraction to obtain the characteristics of the time-frequency domain and the rhythm and velocity domain of the echo signal.Finally,the acquired features are input into Softmax classifier to realize the classification and recognition of the rotor UAV.Experimental results based on actual radar data show that the accuracy of the proposed classification method can reach 98.9%.
Key words:  rotorcraft UAV identification  micro-Doppler effect  short-time Fourier transform  dual-channel GoogLeNet network
安全联盟站长平台